首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
An enzymatic orthophosphate removal system is described which can be effectively used to continuously remove orthophosphate from biochemical samples. The phosphorolysis of nicotinamide riboside is catalyzed by calf spleen nucleoside phosphorylase to give ribose-1-PO4 and nicotinamide along with a proton. At pH 8 the production of ribose-1-PO4 from orthophosphate is essentially quantitative. This reaction can be monitored optically or by 31P nuclear magnetic resonance (NMR). Equations are given for determining the time required to remove a given amount of phosphate from a typical NMR sample with a known amount of nucleoside phosphorylase. The effects of a competing orthophosphate-producing reaction are considered.  相似文献   

2.
1. Double reciprocal plots (1/v vs 1/S) for nucleoside substrates of chicken liver purine nucleoside phosphorylase were non linear at high inosine or deoxyinosine concentrations (greater than 0.1 mM). The appearance of downward curvatures may be correlated with the oxidation of sulfhydryl groups of the enzyme. 2. 5,5'-Dithiobis-(2-nitrobenzoic acid) reacts with four sulfhydryl groups in the native enzyme, but upon denaturation with sodium dodecylsulfate six sulfhydryl groups react with this reagent. 3. Inosine, ribose-1-phosphate, hypoxanthine and orthophosphate partially protect sulfhydryl groups from the reaction with Ellman's reagent. 4. Inhibition of purine nucleoside phosphorylase by p-chloromercuribenzoate and 5,5'-dithiobis-(2-nitrobenzoic acid) follows a second order reaction kinetics.  相似文献   

3.
Purified chicken liver purine nucleoside phosphorylase shows two ionizable groups at the active site whose pKa were near pH 6.9 and 8; the molecular weight (67,000-89,000) depends on the protein concentration. Initial velocity studies and product inhibition patterns were consistent with a random mechanism, which is rapid equilibrium in the phosphorolytic reaction with a dead-end complex, but not in the synthetic reaction. Free inorganic orthophosphate purine nucleoside phosphorylase (Sephadex G-100) catalyzes a pentosyl transfer reaction from inosine to guanine according to a random Bi, Bi mechanism.  相似文献   

4.
The mechanism of biosynthetic, transferase, ATPase, and transphosphorylation reactions catalyzed by unadenylylated glutamine synthetase from E. coli was studied. Activation complex(es) involved in the biosynthetic reaction are produced in the presence of either Mg2+ or Mn2+ ; however, with the Mn2+-enzyme inhibition by the product, ADP, is so great that the overall forward biosynthetic reaction cannot be detected with the known assay methods. Binding studies show that substrates (except for NH3 and NH2OH which are not reported here) can bind to the enzyme in a random manner and that binding of the ATP-glutamate, ADP-Pi or ADP-arsenate pairs is strongly synergistic. Inhibition and binding studies show that the same binding site is utilized for glutamate and glutamine in biosynthetic and transferase reactions, respectively, and that a common nucleotide binding site is used for all reactions studied. Studies of the reverse biosynthetic reaction and results of fluorescent titration experiments suggest that both arsenate and orthophosphate bind at a site which overlaps the gamma-phosphate site of nucleoside triphosphate. In the reverse biosynthetic and transferase reactions, ATP serves as a substrate for the Mn2+-enzyme but not for the Mg2+-enzyme. The ATP supported transferase activity of Mn2+-enzyme is probably facilitated by the generation of ADP through ATP hydrolysis. When AMP was the only nucleotide substrate added, it was converted to ATP with concomitant formation of two equivalents of glutamate, under the reverse biosynthetic reaction conditions, and no ADP was detected. The reversibility of 180 transfer between orthophosphate and gamma-acyl group of glutamate was confirmed. ATPase activity of Mg2+ and Mn2+ unadenylylated enzymes is about the same. Both enzymes forms catalyze transphosphorylation reactions between various purine nucleoside triphosphates and nucleoside diphosphates under biosynthetic reaction conditions. The data are consistent with the hypothesis that a single active center is utilized for all reactions studied. Two stepwise mecanisms that could explain the results are discussed.  相似文献   

5.
1. Purine nucleoside phosphorylase (purine nucleoside:orthophosphate ribosyl transferase, EC 2.4.2.1) was purified to electrophoretic homogeneity from the liver of Camelus dromedarius. 2. The enzyme appears to be a dimer with a 44,000 subunit mol. wt and displays non-linear kinetics with concave downward curvature in double reciprocal plots with respect to both inosine and orthophosphate as variable substrates. 3. The effect of thiol compounds on the enzyme activity and of pH on kinetic parameters is reported.  相似文献   

6.
An enzyme from Entamoeba histolytica catalyzes the formation of acetyl phosphate and orthophosphate from acetate and inorganic pyrophosphate (PPi), but it displays much greater activity in the direction of acetate formation. It has been purified 40-fold and separated from interfering enzyme activities by chromatography. Its reaction products have been quantitatively established. ATP cannot replace PPi as phosphoryl donor in the direction of acetyl phosphate formation nor will any common nucleoside diphosphate replace orthophosphate as phosphoryl acceptor in the direction of acetate formation. The trivial name proposed for the new enzyme is acetate kinase (PPi).  相似文献   

7.
Three members of the Nudix (nucleoside diphosphate X) hydrolase superfamily have been cloned from Escherichia coli MG1655 and expressed. The proteins have been purified and identified as enzymes active on nucleoside diphosphate derivatives with the following specificities. Orf141 (yfaO) is a nucleoside triphosphatase preferring pyrimidine deoxynucleoside triphosphates. Orf153 (ymfB) is a nonspecific nucleoside tri- and diphosphatase and atypically releases inorganic orthophosphate from triphosphates instead of pyrophosphate. Orf191 (yffH) is a highly active GDP-mannose pyrophosphatase. All three enzymes require a divalent cation for activity and are optimally active at alkaline pH, characteristic of the Nudix hydrolase superfamily. The question of whether or not Orf1.9 (wcaH) is a bona fide member of the Nudix hydrolase superfamily is discussed.  相似文献   

8.
Initial velocity studies and product inhibition patterns for purine nucleoside phosphorylase from rabbit liver were examined in order to determine the predominant catalytic mechanism for the synthetic (forward) and phosphorolytic (reverse) reactions of the enzyme. Initial velocity studies in the absence of products gave intersecting or converging linear double reciprocal plots of the kinetic data for both the synthetic and phosphorolytic reactions of the enzyme. The observed kinetic pattern was consistent with a sequential mechanism, requiring that both substrates add to the enzyme before products may be released. The product inhibition patterns showed mutual competitive inhibition between guanine and guanosine as variable substrates and inhibitors. Ribose 1-phosphate and inorganic orthophosphate were also mutually competitive toward each other. Other combinations of substrates and products gave noncompetitive inhibition. Apparent inhibition constants calculated for guanine as competitive inhibitor and for ribose 1-phosphate as noncompetitive inhibitor of the enzyme, with guanosine as variable substrate, did not vary significantly with increasing concentrations of inorganic orthophosphate as fixed substrate. These results suggest that the mechanism was order and that substrates add to the enzyme in an obligatory order. Dead end inhibition studies carried out in the presence of the products guanine and ribose 1-phosphate, respectively, showed that the kinetically significant abortive ternary complexes of enzyme-guanine-inorganic orthophosphate (EQB) and enzyme-guanose-ribose 1-phosphate (EAP) are formed. The results of dead end inhibition studies are consistent with an obligatory order of substrate addition to the enzyme. The nucleoside or purine is probably the first substrate to form a binary complex with the enzyme, and with which inorganic orthophosphate or ribose 1-phosphate may interact as secondary substrates. The evidences presented in this investigation support an Ordered Theorell-Chance mechanism for the enzyme.  相似文献   

9.
An enzyme catalyzing the ribosyl group transfer from inosine to adenine was purified from Aerobacter cloacae No. 172–1 by means of ammonium sulfate fractionation and DEAE-cellulose and hydroxylapatite column chromatographies. A. cloacae was found to have much activities of this enzyme in its cell free extract. The enzyme activity was increased about 90-fold. By using the purified enzyme, some properties of the reaction were investigated. The enzyme was considerably stable and essentially required inorganic orthophosphate for the reaction. It was suggested that the enzyme might be a purine nucleoside phosphorylase and that the reaction might be a coupled reaction with ribose-1-phosphate as an intermediate. The enzyme could not transfer the ribosyl group between purine and pyrimidine bases.  相似文献   

10.
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other nucleoside triphosphatase members of the superfamily release inorganic pyrophosphate and the cognate nucleoside monophosphate, YtkD hydrolyses nucleoside triphosphates in a stepwise fashion through the diphosphate to the monophosphate, releasing two molecules of inorganic orthophosphate. Contrary to a previous report, our enzymological and genetic studies indicate that ytkD is not an orthologue of E. coli mutT.  相似文献   

11.
Rabbit liver purine nucleoside phosphorylase (purine nucleoside: orthophosphate ribosyltransferase EC 2.4.2.1.) was purified to homogeneity by column chromatography and ammonium sulfate fractionation. Homogeneity was established by disc gel electrophoresis in presence and absence of sodium dodecyl sulfate, and isoelectric focusing. Molecular weights of 46,000 and 39,000 were determined, respectively, by gel filtration and by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Product inhibition was observed with guanine and hypoxanthine as strong competitive inhibitors for the enzymatic phosphorolysis of guanosine. Respective Kis calculated were 1.25 x 10(-5) M for guanine and 2.5 x 10(-5) M for hypoxanthine. Ribose 1-phosphate, another product of the reaction, gave noncompetitive inhibition with guanosine as variable substrate, and an inhibition constant of 3.61 x 10(-4) M was calculated. The protection of essential --SH groups on the enzyme, by 2-mercaptoethanol or dithiothreitol, was necessary for the maintenance of enzyme activity. Noncompetitive inhibition was observed for p-chloromercuribenzoate with an inhibition constant of 5.68 x 10(-6)M. Complete reversal of this inhibition by an excess of 2-mercaptoethanol or dithiothreitol was demonstrated. In the presence of methylene blue, the enzyme showed a high sensitivity to photooxidation and a dependence of photoinactivation on pH, strongly implicating histidine as the susceptible group at the active site of the enzyme. The pKa values determined for ionizable groups of the active site of the enzyme were near pH 5.5 and pH 8.5 The chemical and kinetic evidences suggest that histidine and cysteine may be essential for catalysis. Inorganic orthophosphate (Km 1.54 x 10(-2) M) was an obligatory anion requirement, and arsenate substituted for phosphate with comparable results. Guanosine (Km 5.00 x 10(-5) M), deoxyguanosine (Km 1.00 x 10(-4)M) and inosine (Km 1.33 x 10(-4)M), were substrates for enzymatic phosphorolysis. Xanthosine was an extremely poor substrate, and adenosine was not phosphorylyzed at 20-fold excess of the homogeneous enzyme. Guanine (Km 1.82 x 10(-5)M),ribose 1-phosphate (Km 1.34 x 10(-4) M) and hypoxanthine were substrates for the reverse reaction, namely, the enzymatic synthesis of nucleosides. The initial velocity studies of the saturation of the enzyme with guanosine, at various fixed concentrations of inorganic orthophosphate, suggest a sequential bireactant catalytic mechanism for the enzyme.  相似文献   

12.
Purine nucleoside phosphorylase (EC 2.4.2.1, purine nucleoside:orthophosphate ribosyltransferase) was purified and characterized from the malarial parasite, Plasmodium lophurae, using a chromatofocusing (Pharmacia) column and a formycin B affinity column. The apparent isoelectric point of the native protein, as determined by chromatofocusing, was 6.80. By gel filtration and both native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the native enzyme appeared to be a pentamer with a native molecular weight of 125,300 and a subunit molecular weight of 23,900. The enzyme had a broad pH optimum, pH 5.5-7.5, with maximum activity at pH 6.0-6.5. The enzyme reaction was readily reversible with a Km for inosine of 33 microM and a Km for hypoxanthine of 82 microM. Thioinosine, guanosine, and guanine were also substrates for the plasmodial enzyme, but allopurinol and adenine were not. The parasite enzyme was competitively inhibited by formycin B (Ki = 0.39 microM). Formycin A, azaguanine, and 8-aminoguanosine were not inhibitors of the enzyme.  相似文献   

13.
Abstract

Dissociation constants and stoichiometry of binding for interaction of Cellulomonas sp. purine nucleoside phosphorylase with its substrates: inosine/guanosine, orthophosphate, guanine/hypoxanthine and D-ribose-1-phosphate were studied by kinetic and spectrofluorimetric methods.  相似文献   

14.
We have shown recently that polyclonal human milk sIgA contains a subfraction of antibodies (Abs) tightly bound to unusual minor milk lipids containing sialic acid. Here, we show that a small subfraction of milk IgG is tightly bound to the similar or the same minor lipids. The ability of small fractions of sIgA and IgG from human milk to phosphorylate selectively two minor lipids in the presence of [gamma-(32)P]nucleoside triphosphates was shown here for the first time to be an intrinsic property of these antibodies. In contrast to known kinases, antibodies with lipid kinase activity can transfer phosphoryl group to lipids not only from ATP but also from other different nucleotides (dATP, GTP, dGTP, UTP, TTP) with comparable efficiencies (30-100%). To our knowledge, there are no examples of enzymes using orthophosphate as a substrate of phosphorylation reactions. An extremely unusual property of lipid kinase Abs is their high affinity for orthophosphate (K(m)=1.6-5.6 microM) and capability to phosphorylate minor lipids using [(32)P]orthophosphate as donor of phosphate group. The relative specific activity and affinity of abzymes for orthophosphate and ATP depend significantly on donor milk. However, the levels of Ab-dependent phosphorylation of lipids for all Abs in the case of ATP (100%) and orthophosphate (60-80%) as substrates are comparable. The first example of natural abzymes with synthetic activity was milk sIgA with protein kinase activity. Most probably, lipid kinase sIgA and IgG of human milk are the second example of Abs with synthetic activity.  相似文献   

15.
Purine nucleoside phosphorylase (EC 2.4.2.1; purine nucleoside:orthophosphate ribosyltransferase) from fresh human erythrocytes has been purified to homogeneity in two steps with an overall yield of 56%. The purification involves DEAE-Sephadex chromatography followed by affinity chromatography on a column of Sepharose/formycin B. This scheme is suitable for purification of the phosphorylase from as little as 0.1 ml of packed erythrocytes. The native enzyme appears to be a trimer with native molecular weight of 93,800 and the subunit molecular weight of 29,700 +/- 1,100. Two-dimensional gel electrophoresis of the purified enzyme under denaturing conditions revealed four major separable subunits (numbered 1 to 4) with the same molecular weight. The apparent isoelectric points of subunits 1 to 4 in 9.5 M urea are 6.63, 6.41, 6.29, and 6.20, respectively. The different subunits are likely the result of post-translational modification of the enzyme and provide an explanation of the complex native isoelectric focusing pattern of purine nucleoside phosphorylase from erythrocytes. Three of the four subunits are detectable in two-dimensional electrophoretic gels of crude hemolysates. Knowing the location of the subunits of purine nucleoside phosphorylase in a two-dimensional electropherogram allows one to characterize the purine nucleoside phosphorylase in crude cell extracts from individuals with variant or mutant purine nucleoside phosphorylase as demonstrated in a subsequent communication. Partial purification of the phosphorylase from 1 ml of erythrocytes on DEAE-Sephadex increases the sensitivity of detection of the subunits to the 0.3% level.  相似文献   

16.
Summary Strains of Escherichia coli have been selected, which contain mutations in the udk gene, encoding uridine kinase. The gene has been located on the chromosome as cotransducible with the his gene and shown to be responsible for both uridine and cytidine kinase activities in the cell.An additional mutation in the cdd gene (encoding cytidine deaminase) has been introduced, thus rendering the cells unable to metabolize cytidine. In these mutants exogenously added cytidine acts as inducer of nucleoside catabolizing enzymes indicating that cytidine per se is the actual inducer.When the udk, cdd mutants are grown on minimal medium the enzyme levels are considerably higher than in wild type cells. Evidence is presented indicating that the high levels are due to intracellular accumulation of cytidine, which acts as endogenous inducer.Abbreviations and Symbols FU 5-fluorouracil - FUR 5-fluorouridine - FUdR 5-fluoro-2'deoxyuridine - FCR 5-fluorocytidine - FCdR 5-fluorodeoxycytidine - THUR 3, 4, 5, 6-tetrahydrouridine - UMP uridine monophosphate - CMP cytidine monophosphate - dUMP deoxyuridine monophosphate. Genes coding for: cytidine deaminase - edd uridine phosphorylase - udp thymidine phosphorylase - tpp purmnucleoside phosphorylase - pup uridine kinase (=cytidine kinase) - udk UMP-pyrophosphorylase - upp. CytR regulatory gene for cdd, udp, dra, tpp, drm and pup Enzymes EC 2.4.2.1 Purine nucleoside phosphorylase or purine nucleoside: orthophosphate (deoxy)-ribosyltransferase - EC 2.4.2.4 thymidine phosphorylase or thymidine: orthophosphate deoxyribosyltransferase - EC 2.4.2.3 uridine phosphorylase or uridine: orthophosphate ribosyltransferase - EC 3.5.4.5 cytidine deaminase or (deoxy)cytidine aminohydrolase - EC 4.1.2.4 deoxyriboaldolase or 2-deoxy-D-ribose-5-phosphate: acetaldehydelyase - EC 2.4.2.9 UMP-pyrophosphorylase or UMP: pyrophosphate phosphoribosyltransferase - EC 2.7.1.48 uridine kinase or ATP: uridine 5-phosphotransferase  相似文献   

17.
Two forms of DNA-dependent ATPase activity have been purified from yeast extracts. The two ATPases differ from each other in chromatographic properties and heat stabilities but have similar molecular weight and reaction properties. DNA-dependent ATPase I has been purified to near homogeneity, while DNA-dependent ATPase II is only partially purified. The two ATPases from yeast are related structurally since antiserum raised against ATPase I cross-react against ATPase II. Yeast DNA-dependent ATPase I has a native molecular weight of about 68,000 and consists of a single polypeptide chain. ATPase II also sediments on sucrose gradient as a 68,000-dalton protein. Both yeast DNA-dependent ATPases hydrolyze dNTPs and rNTPs to their corresponding nucleoside diphosphates and orthophosphate, but dATP and ATP are preferred substrates. In addition to nucleoside triphosphates, both enzymes require a divalent cation and a polynucleotide for activity. Single-stranded DNAs and polydeoxynucleotides are the most effective co-substrates for yeast DNA-dependent ATPases. Addition of yeast DNA-dependent ATPases to DNA synthesis system containing yeast DNA polymerases does not significantly stimulate the rate of DNA synthesis.  相似文献   

18.
GTP catabolism induced by sodium azide or deoxyglucose was studied in purine nucleoside phosphorylase (PNP) deficient human B lymphoblastoid cells. In PNP deficient cells, as in control cells, guanylate was both dephosphorylated and deaminated but dephosphorylation was the major pathway. Only nucleosides were excreted during GTP catabolism by PNP deficient cells and the main product was guanosine. The level of nucleoside excretion was largely affected by intracellular orthophosphate (Pi) level. In contrast, normal cells excreted nucleosides only at low Pi level while at high Pi levels, purine bases (guanine and hypoxanthine) were exclusively excreted. PNP deficiency had no effect on the extent of GMP deamination.  相似文献   

19.
The aim of the present study was to test simple reaction sequences which describe calcium-independent plus calcium-dependent phosphorylation of sarcoplasmic reticulum transport. ATPase by orthophosphate including the function of magnesium in phosphoenzyme formation. The reaction schemes considered were based on the reaction sequence for calcium-independent phosphorylation proposed previously; namely that the transport enzyme (E) forms a ternary complex (Mg . E . Pi), by random binding of free magnesium and free orthophosphate, which is in equilibrium with the magnesium-phosphoenzyme (Mg . E-P). Phosphorylation, performed at pH 7.0 20 degrees C and a constant free orthophosphate concentration using sarcoplasmic reticulum vesicles either unloaded or loaded passively with calcium in the presence of 5 mM or 40 mM CaCl2, resulted in a gradual decrease in the apparent magnesium half-saturation constant and an increase in maximum phosphoprotein formation with increasing calcium loads. When phosphorylation of sarcoplasmic reticulum vesicles preloaded in the presence of 5 mM CaCl2 was performed at a constant free magnesium concentration, a decrease in the apparent orthophosphate half-saturation constant and an increase in maximum phosphoprotein formation was observed as compared with vesicles from which calcium inside has been removed by ionophore X-537A plus EGTA treatment; however, both parameters remained unchanged by increasing free magnesium from 20 mM to 30 mM. When phosphorylation of sarcoplasmic reticulum vesicles passively loaded with calcium in the presence of 40 mM CaCl2, at which the saturation of the low-affinity calcium binding sites of the ATPase is presumably near maximum, was performed at increasing concentrations of free orthophosphate, there was a parallel shift of phosphoprotein formation as a function of free magnesium and vice versa, with no change in the maximum phosphoenzyme formation. Comparison of the experimental data with the pattern of phosphoprotein formation predicted from model equations for various theoretical possible reaction sequences suggests that phosphoenzyme formation from orthophosphate possesses the following features. Firstly, calcium present at the inside of the sarcoplasmic reticulum membrane binds to the free enzyme and in sequential order to E . Mg . Pi or Mg . E-P or to both, but neither to E. Mg nor to E . Pi. Secondly, calcium-independent and calcium-dependent phosphoproteins are magnesium-phosphoenzymes. Calcium-dependent phosphoenzyme is a magnesium-calcium-enzyme phosphate complex with 1 magnesium, 2 calciums and 1 orthophosphate (the last covalently) bound to the enzyme [Mg . E-P . (Cai)2], and not a 'calcium-phosphoprotein' without bound magnesium.  相似文献   

20.
Nucleoside analog inhibition studies have been conducted on thyroidal purine nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) which catalyzed an ordered bi-bi type mechanism where the first substrate is inorganic phosphate and the last product is ribose 1-phosphate. Heterocyclic- and carbohydrate-modified nucleoside inhibitors demonstrate mixed type inhibition suggesting such analogs show an affinity (Ki) for the free enzyme. A kinetic model is proposed which supports the observed inhibition patterns. These studies together with alternate substrate studies indicate that nucleoside binding requires a functional group capable of hydrogen bonding at the 6-position of the purine ring and that the orientation of the bound substrate may be syn. Proper geometry of the phosphate is dependent upon the 3'-substituent to the orientated below the furanose ring. The 5'-hydroxyl group is required for substrate activity. The proposed rate limiting step of the phosphorylase mechanism is the enzymatic protonation of the 7-N position of the nucleoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号