首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differential "light-minus-dark" spectra were obtained for reaction center (RC) preparations cooled in the light and in the dark at 77 K. The two types of preparations were found to display different spectral features in the spectral regions 760-770, 790-810, 880-990 nm. Differences in the spectra of the two types were found to exist in preparations cooled to temperatures below 120-100 K, whereas at temperatures above 130 K such differences were not observed. The observed spectral changes may be associated with the polarization processes occurring in the RC globule. Samples cooled in the light and in the dark show different temperature dependencies of the efficiency of electron transfer to the secondary quinone acceptor. The differences are irreversible after cooling to temperatures below 170 K, and reversible after cooling to 180-200 K. It is postulated that the observed kinetic changes are reflections of changes in the configuration of the acceptor complex of the RC. The possible existence of a correlation between the polarization processes in the protein globule and the structural configurations of the RC is discussed.  相似文献   

2.
The kinetics of electron transfer between primary and secondary quinone acceptors of the photosynthetic reaction center (RC) of the purple bacterium Rhodobacter sphaeroides wild type was studied at the wavelengths 400 and 450 nm. It was shown that removing of molecular oxygen from RC preparations slowed down the fast phase of the process from 4–4.5 μsec to tens of microseconds. Similar effects were observed after the incubation of RC in heavy water for 72 h or glycerol addition (90% v/v) to RC preparations. The observed effects are interpreted in terms of the influence of these agents on the hydrogen bond system of the RC. The state of this system can determine the formation of different RC conformations that are characterized by different rates of electron transfer between quinone acceptors. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1541–1547. Original Russian Text Copyright ? 2005 by Knox, Baptista, Uchoa, Zakharova.  相似文献   

3.
Photosystem II reaction center (RC) preparations isolated from spinach (Spinacea oleracea) by the Nanba-Satoh procedure (O Nanba, K Satoh 1987 Proc Natl Acad Sci USA 84: 109-112) are quite labile, even at 4°C in the dark. Simple spectroscopic criteria were developed to characterize the native state of the material. Degradation of the RC results in (a) blue-shifting of the red-most absorption maximum, (b) a shift of the 77 K fluorescence maximum from ~682 nm to ~670 nm, and (c) a shift of fluorescence lifetime components from 1.3-4 nanoseconds and >25 nanoseconds to ~6-7 nanoseconds. Fluorescence properties at 77 K seem to be a more sensitive spectral indicator of the integrity of the material. The >25 nanosecond lifetime component is assigned to P680+ Pheophytin recombination luminescence, which suggests a correlation between the observed spectral shifts and the photochemical competence of the preparation. Substitution of lauryl maltoside for Triton X-100 immediately after RC isolation stabilizes the RCs and suggests that Triton may be responsible for the instability.  相似文献   

4.
《FEBS letters》1987,214(1):28-34
Picosecond absorption spectroscopy was used to monitor laser-induced oxidation-reductions of reaction center (RC) bacteriochlorophyll (P) and bacteriopheophytin (I) in Rhodopseudomonas sphaeroides RC preparations on exposure to different chemicals. The D2O isotope substitution of H2O or partial substitution of water by organic solvents (ethylene glycol, glycerol, propylene glycol, dimethyl sulfoxide) causes the appearance of a fast, nanosecond component of P+ reduction, the result of an increased probability of recombination of the primary ion-radical products P+I → PI. The effect is accompanied by a noticeable slowing down of electron transfer from photoreduced bacteriopheophytin to the primary quinone acceptor QA. The effect of the organic solvents, known as cryoprotectors, is correlated with their degree of hydrophobicity, i.e. the ability to penetrate the RC protein and interact with bound water and protein hydrogen bonds. The conclusion drawn from the data is that the dielectric relaxation processes through which the intermediate energy levels of the carriers in the PIQA system are lowered to levels necessary for the stabilization of the photochemically separated charges proceed with the involvement of protons of the nearest water-protein surrounding of the RC pigments and electron transport cofactors.  相似文献   

5.
The photosynthetic reaction center (RC) is the first membrane protein whose three-dimensional structure was revealed at the atomic level by X-ray crystallograph more than fifteen years ago. Structural information about RC made a great contribution to the understanding of the reaction mechanism of the complicated membrane protein complex. High-resolution structures of RCs from three photosynthetic bacteria are now available, namely, those from two mesophilic purple non-sulfur bacteria, Blastochloris viridis and Rhodobacter sphaeroides, and that from a thermophilic purple sulfur bacterium, Thermochromatium tepidum. In addition, a variety of structural studies, mainly by X-ray crystallography, are still being performed to give more detailed insight into the reaction mechanism of this membrane protein. This review deals with structural studies of bacterial RC complexes, and a discussion about the electron transfer reaction between RCs and electron donors is the main focus out of several topics addressed by these structural studies. The structural data from three RCs and their electron donors provided reliable models for molecular recognition in the primary step of bacterial photosynthesis.  相似文献   

6.
The differences in the average fluorescence lifetime (τav) of tryptophanyls in photosynthetic reaction center (RC) of the purple bacteria Rb. sphaeroides frozen to 80 K in the dark or on the actinic light was found. This difference disappeared during subsequent heating at the temperatures above 250 K. The computer-based calculation of vibration spectra of the tryptophan molecule was performed. As a result, the normal vibrational modes associated with deformational vibrations of the aromatic ring of the tryptophan molecule were found. These deformational vibrations may be active during the nonradiative transition of the molecule from the excited to the ground state. We assume that the differences in τav may be associated with the change in the activity of these vibration modes due to local variations in the microenvironment of tryptophanyls during the light activation.  相似文献   

7.
Amplitude characteristics and kinetics of laser-induced oxidation of high-potential cytochrome CH by a photosynthetic reaction center (RC) were investigated in Ectothiorhodospira shaposhnikovii chromatophore preparations of various humidity. It is shown that the diminuition of the amount of oxidized cytochrome and the decrease of the rate of the reaction on lowering the preparation humidity can be explained in terms of the concept of conformation-controlled electron transfer within the CH-RC complex. A model is suggested which predicts that the reversible transition of the complex from one conformational state which allows electron transfer ("contact" state) to the other in which the transfer is impossible ("non-contact" state) is the result of drying (or low temperature) induced changes in the electron tunnelling path in the region of "contact" of the cytochrome CH and RC protein globules.  相似文献   

8.
Methods of laser-induced temperature jumps and fast freezing were used for testing the rates of thermoinduced conformational transitions of reaction center (RC) complexes in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria. An electron transfer reaction from primary to secondary quinone acceptors was used as a probe of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. To investigate the dynamics of spontaneous decay of the RC state induced by the thermal pulse, the thermal pulse was applied either before or during photoinduced activation of electron transport reactions in the RC acceptor complex. The maximum effect was observed if the thermal pulse was applied against the background of steady-state photoactivation of the RC. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. Independent support of the estimates was obtained from experiments with varied cooling rates of the samples tested.  相似文献   

9.
To establish a system for over-production of PSII-L protein which is a component of photosystem II (PSII) complex, a plasmid designated as pMAL-psbL was constructed and expressed in Escherichia coli JM109. A fusion protein of PSII-L and maltose-binding proteins (53 kDa on SDS-PAGE) was accumulated in E. coli cells to a level of 10% of the total protein upon isopropyl--D-thiogalactopyranoside (IPTG) induction. The carboxyl-terminal part of 5.0 kDa was cleaved from the fusion protein and purified by an anion exchange column chromatography in the presence of detergents. This 5.0 kDa protein was identified as PSII-L by amino-terminal amino acid sequence analysis and the chromatographic behavior on an anion exchange gel. A few types of mutant PSII-L were also prepared by the essentially same procedure except for using plasmids which contain given mutations in psbL gene. Plastoquinone-9 (PQ-9) depleted PSII reaction center core complex consisting of D1, D2, CP47, cytochrome b-559 (cyt b-559), PSII-I and PSII-W was reconstituted with PQ-9 and digalactosyldiglyceride (DGDG) together with the wild-type or mutant PSII-L produced in E. coli or isolated PSII-L from spinach. Significant difference between the wild-type PSII-L proteins from E. coli and spinach was not recognized in the effectiveness to recover the photo-induced electron transfer activity in the resulting complexes. The analysis of stoichiometry of PQ-9 per reaction center in the PQ-9 reconstituted PS II revealed that two molecules of PQ-9 were reinserted into a reaction center independent of the presence or absence of PSII-L. These results suggest that PSII-L recovers the electron transfer activity in the reconstituted RC by a mechanism different from the stabilization of PQ-9 in the QA site of PSII. Ubiquinone-10 (UQ-10), but not plastoquinone-2 (PQ-2), substituted PQ-9 for recovering the PSII-L supported electron transfer activity in the reconstituted PSII reaction center complexes. The results obtained with the mutant PSII-L proteins revealed that the carboxyl terminal part rather than amino terminal part of PSII-L is crucial for recovering the electron transfer activity in the reconstituted complexes.  相似文献   

10.
Rates of thermoinduced conformational transitions of reaction center (RC) complexes providing effective electron transport were studied in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria using methods of fast freezing and laser-induced temperature jump. Reactions of electron transfer from the primary to secondary quinone acceptors and from the multiheme cytochrome c subunit to photoactive bacteriochlorophyll dimer were used as probes of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. In contrast to the quinone complex, the thermoinduced transition of the macromolecular RC complex to the state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220-280 K accounts for tens of seconds. This transition is thought to be mediated by large-scale conformational dynamics of the macromolecular RC complex.  相似文献   

11.
The three-dimensional (3D) structure of the reaction center (RC) complex isolated from the green sulfur bacterium Chlorobium tepidum was determined from projections of negatively stained preparations by angular reconstitution. The purified complex contained the PscA, PscC, PscB, PscD subunits and the Fenna-Matthews-Olson (FMO) protein. Its mass was found to be 454 kDa by scanning transmission electron microscopy (STEM), indicating the presence of two copies of the PscA subunit, one copy of the PscB and PscD subunits, three FMO proteins and at least one copy of the PscC subunit. An additional mass peak at 183 kDa suggested that FMO trimers copurify with the RC complexes. Images of negatively stained RC complexes were recorded by STEM and aligned and classified by multivariate statistical analysis. Averages of the major classes indicated that different morphologies of the elongated particles (length=19 nm, width=8 nm) resulted from a rotation around the long axis. The 3D map reconstructed from these projections allowed visualization of the RC complex associated with one FMO trimer. A second FMO trimer could be correspondingly accommodated to yield a symmetric complex, a structure observed in a small number of side views and proposed to be the intact form of the RC complex.  相似文献   

12.
The mechanism of quenching to tryptophan fluorescence was studied for a number of proteins and membranes of sarcoplasmic reticulum. The inductive-resonance energy transfer from tryptophanyls to pyrene was shown to be absent though all the necessary and sufficient F?rster's conditions were met. The quenching proceeds by a dynamic mechanism. The quenching efficiency characterises the sterical accessibility of tryptophanyls for pyrene. The simultaneously observed rise of luminescence of the quencher is trivial. It was concluded that measuring intermolecular distances and defining protein conformational states using F?rster's theory is wrong in case of the tryptophany-pyrene pair.  相似文献   

13.
The maximal total release of pigment protein-lipid complexes (PPLC) during their isolation from pea chloroplasts was achieved by 1-hr solubilization with Triton X-100, the Triton:chlorophyll (T/Chl) ratio being 50 mg/mg/ml. The total yield of the reaction center complexes (sigma PPLC RC) was 22,3%, whereas that of the auxiliary light-accumulating complex (ALA-PPLC) was approximately 32% with respect to Chl. An increase in the solubilization time and of the T/Chl ratio resulted in dissociation of ALA-PPLC. On the contrary, the reaction center complexes steadily maintained their composition and high photochemical activity within a wide range of T/Chl during 24--28 hrs of solubilization. The purest preparations of PPLC RC of phostosystem I (PS-I) were obtained by 24 hr-incubation (T/Chl = 80); their Chl/P700 ratio after a single fractionation on DEAE-cellulose was equal to 36. A considerable increase of T/Chl and of the solubilization time hampered the chromatographical separation of PPLC RC of PS-I and PPLC RC of PS-II. The optimal conditions for isolation of PPLC RC of PS-I and PPLC RC of PS-II were: solubilization at T/Chl 80--120 and prolongation of incubation time from 5 to 7 hrs. The photochemical activity of the complexes obtained was maximal and correlated with the minimal content of admixture P700 (1 molecule of P700 per 450--500 molecules of Chl.).  相似文献   

14.
Electron paramagnetic resonance (EPR) was used to simultaneously study radiation-induced cofactor reduction and damaging radical formation in single crystals of the bacterial reaction center (RC). Crystals of Fe-removed/Zn-replaced RC protein from Rhodobacter ( R.) sphaeroides R26 were irradiated with varied radiation doses at cryogenic temperature and analyzed for radiation-induced free radical formation and alteration of light-induced photosynthetic electron transfer activity using high-field (HF) D-band (130 GHz) and X-band (9.5 GHz) EPR spectroscopies. These analyses show that the formation of radiation-induced free radicals saturated at doses 1 order of magnitude smaller than the amount of radiation at which protein crystals lose their diffraction quality, while light-induced RC activity was found to be lost at radiation doses at least 1 order of magnitude lower than the dose at which radiation-induced radicals exhibited saturation. HF D-band EPR spectra provide direct evidence for radiation-induced reduction of the quinones and possibly other cofactors. These results demonstrate that substantial radiation damage is likely to have occurred during X-ray diffraction data collection used for photosynthetic RC structure determination. Thus, both radiation-induced loss of photochemical activity in RC crystals and reduction of the quinones are important factors that must be considered when correlating spectroscopic and crystallographic measurements of quinone site structures.  相似文献   

15.
The dependence of the rate of dark recombination between the photooxidized primary donor--dimer bacteriochlorophyll molecule (P) and reduced primary quinone acceptor (QA), P+QA(-)-->PQA was studied in photosynthetic reaction centers (RC) from Rhodobacter sphaeroides in the temperature range of 100-320 K. Control RC preparations, RC species with the removed H-subunit as well as RC samples with the hydrogen bonds network modified by isotopic D2O-H2O substitution were investigated. An anomalous temperature dependence of the recombination time (tau rec) of dark reaction P+QA(-)-->PQA was found for all RC samples. It was found that upon heating from 120 to 290 K tau rec increased 2.5 fold. However, upon further heating to 320 K, tau rec decreased again. The temperature dependences of the P+QA(-)-->PQA recombination time were compared with those of the thermodepolarization current of RC preparations in the same temperature range. The temperature curve of the thermodepolarization current was also nonmonotonous. The theoretical interpretation of the temperature dependence of tau rec as well as of the thermodepolarization current was made in the framework of the theory of structural phase transitions within the hydrogen bond network in the water-protein surrounding of the redox centers participating in the electron transfer reactions.  相似文献   

16.
Treatment of isolated spinach thylakoid fragments with Triton X-100 followed by repeated sucrose density gradient centrifugations and Sephacryl S-300 and DEAE-Sephacel chromatographies yielded a highly purified P700-chlorophyll a protein complex complex which consists of five polypeptides. The protein complex is virtually free of chlorophyll b (Ch1 alpha/Ch1 b greater than 10) with approximately 30 chlorophylls per P700, and contains iron-sulfur centers A, B, and X. At pH values higher than 6, divalent cations, but not monovalent or trivalent cations, efficiently accelerated the electron transfer from reduced spinach plastocyanin to the photooxidized P700 in the P700-chlorophyll alpha protein complex. At pH values lower than 6, the reaction rate drastically increased with decreasing pH with a maximum at about pH 4.3 without cations. Divalent salts as well as monovalent or trivalent salts decreased the P700 reduction rate at low pH, indicating the involvement of electrostatic interaction in those pH regions. The rate of electron transfer from plastocyanin to the photooxidized P700 in the reaction center protein, which consists of only the largest peptide subunit and no iron-sulfur centers, was reduced only 50% at pH 7.0 in the presence of MgCl2 as compared to the case of P700-chlorophyll alpha protein complex. Essentially similar effects of pH and metal ions on this electron transfer reaction were observed as in the case of P700-chlorophyll alpha protein complex. These results strongly suggest that plastocyanin donates electrons directly to the largest peptide of P700-chlorophyll alpha protein complex and the observed effects of pH and cations are mainly due to the interaction between the largest peptide of P700-chlorophyll alpha protein complex and plastocyanin. The four small subunits in the protein complex seemed to have only a minor role in the reaction with plastocyanin.  相似文献   

17.
18.
Depletion of bicarbonate (carbon dioxide) from oxygenic cells or organelles not only causes cessation of carbon dioxide fixation, but also a strong decrease in the activity of photosystem II; the photosystem II activity can be restored by readdition of bicarbonate. Effects of bicarbonate exist on both the acceptor as well as on the donor side of photosystem II. The influence on the acceptor side is located between the primary and secondary quinone electron acceptor of photosystem II, and can be demonstrated in intact cells or leaves as well as in isolated thylakoids and reaction center preparations. At physiological pH, bicarbonate ions are suggested to form hydrogen bonds to several amino acids on both D1 and D2 proteins, the reaction center subunits of photosystem II, as well as to form ligands to the non-heme iron between the D1 and D2 proteins. Bicarbonate, at physiological pH, has an important role in the water-plastoquinone oxido-reductase: on the one hand it may stabilize, by conformational means, the reaction center protein of photosystem II that allows efficient electron flow and protonation of certain amino acids near the secondary quinone electron acceptor of photosystem II; and, on the other hand, it akppears to play a significant role in the assembly or functioning of the manganese complex at the donor side. Functional roles of bicarbonate in vivo, including protection against photoinhibition, are also discussed.  相似文献   

19.
The recently discovered thermophilic acidobacterium Candidatus Chloracidobacterium thermophilum is the first aerobic chlorophototroph that has a type-I, homodimeric reaction center (RC). This organism and its type-I RCs were initially detected by the occurrence of pscA gene sequences, which encode the core subunit of the RC complex, in metagenomic sequence data derived from hot spring microbial mats. Here, we report the isolation and initial biochemical characterization of the type-I RC from Ca. C. thermophilum. After removal of chlorosomes, crude membranes were solubilized with 0.1% (w/v) n-dodecyl β-D-maltoside, and the RC complex was purified by ion-exchange chromatography. The RC complex comprised only two polypeptides: the reaction center core protein PscA and a 22-kDa carotenoid-binding protein denoted CbpC. The absorption spectrum showed a large, broad absorbance band centered at ~483 nm from carotenoids as well as smaller Q(y) absorption bands at 672 and 812 nm from chlorophyll a and bacteriochlorophyll a, respectively. The light-induced difference spectra of whole cells, membranes, and the isolated RC showed maximal bleaching at 840 nm, which is attributed to the special pair and which we denote as P840. Making it unique among homodimeric type-I RCs, the isolated RC was photoactive in the presence of oxygen. Analyses by optical spectroscopy, chromatography, and mass spectrometry revealed that the RC complex contained 10.3 bacteriochlorophyll a(P), 6.4 chlorophyll a(PD), and 1.6 Zn-bacteriochlorophyll a(P)' molecules per P840 (12.8:8.0:2.0). The possible functions of the Zn-bacteriochlorophyll a(P)' molecules and the carotenoid-binding protein are discussed.  相似文献   

20.
It is shown that dinoseb, added to subchloroplast photosystem-II (PS-II) preparations from pea at a concentration higher than 5 microM, along with blocking the electron transfer on the acceptor side of PS-II, induces the following effects revealing its capability to have redox interaction with the components of PS-II reaction center (RC)-pheophytin (Pheo) and chlorophyll P680: (1) acceleration of the dark relaxation of absorbance (delta A) and chlorophyll fluorescence (delta F) changes related to photoreduction of Pheo as a result of the photoreaction [P680Pheo] [symbol: see text] [P680Pheo-] that leads to elimination of the delta A and delta F at a concentration of the inhibitor higher than 50 microM; (2) lowering of the maximum level of fluorescence (F) due to a decrease of delta F under the condition when the electron acceptor, QA, is reduced; (3) loss of the described effects of dinoseb and appearance of its capability to donate electron to RC of PS-II in the presence of dithionite which reduces dinoseb in the dark; (4) inhibition of delta A related to photooxidation of P680; (5) activation of delta A related to photooxidation P700 in photosystem-I (PS-I) preparations (a similar effect is observed upon the addition of 0.2 mM methylviologen). It is suggested that redox interaction with the pair [P680+Pheo-] leading to the shortening of its life-time contributes to the general effect of inhibition of electron transfer in PS-II by dinoseb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号