首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent advent of gene-targeting techniques in malaria (Plasmodium) parasites provides the means for introducing subtle mutations into their genome. Here, we used the TRAP gene of Plasmodium berghei as a target to test whether an ends-in strategy, i.e., targeting plasmids of the insertion type, may be suitable for subtle mutagenesis. We analyzed the recombinant loci generated by insertion of linear plasmids containing either base-pair substitutions, insertions, or deletions in their targeting sequence. We show that plasmid integration occurs via a double-strand gap repair mechanism. Although sequence heterologies located close (less than 450 bp) to the initial double-strand break (DSB) were often lost during plasmid integration, mutations located 600 bp and farther from the DSB were frequently maintained in the recombinant loci. The short lengths of gene conversion tracts associated with plasmid integration into TRAP suggests that an ends-in strategy may be widely applicable to modify plasmodial genes and perform structure-function analyses of their important products.  相似文献   

2.
To understand the relationship between the primary structure and function of varicella-zoster virus thymidine kinase (VZV TK; EC 2.7.1.21), we established rapid screening and phenotypic selection of mutant VZV TK genes in TK-deficient Escherichia coli C600 by using a constitutive pKK223-3 expression plasmid. In this screening system, mutant TK genes generated by random mutagenesis were identified by the sensitivity of E. coli-expressing VZV TKs to 5-bromo-2'-deoxyuridine and 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl) uracil. Twenty-four mutant clones with amino acid substitutions were isolated, and their nucleotide sequence and enzymatic activities were determined. Of the 24 clones, 20 had single amino acid substitutions, 2 clones had double amino acid substitutions, and 1 clone had triple amino acid substitutions. In 17 cases of single amino acid substitution, six mutations led to lost enzyme activity, and four of these six mutations centered in the ATP-binding site. The other 11 mutations resulted in reduction of both TK and thymidylate kinase activities or only thymidylate kinase activity and were located in scattered positions in the VZV TK gene, although 5 mutations showed a tendency to cluster in the region between positions 251 and 260.  相似文献   

3.
We used ends-in gene targeting to generate knockout mutations of the nucleosome assembly protein 1 (Nap1) gene in Drosophila melanogaster. Three independent targeted null-knockout mutations were produced. No wild-type NAP1 protein could be detected in protein extracts. Homozygous Nap1(KO) knockout flies were either embryonic lethal or poorly viable adult escapers. Three additional targeted recombination products were viable. To gain insight into the underlying molecular processes we examined conversion tracts in the recombination products. In nearly all cases the I-SceI endonuclease site of the donor vector was replaced by the wild-type Nap1 sequence. This indicated exonuclease processing at the site of the double-strand break (DSB), followed by replicative repair at donor-target junctions. The targeting products are best interpreted either by the classical DSB repair model or by the break-induced recombination (BIR) model. Synthesis-dependent strand annealing (SDSA), which is another important recombinational repair pathway in the germline, does not explain ends-in targeting products. We conclude that this example of gene targeting at the Nap1 locus provides added support for the efficiency of this method and its usefulness in targeting any arbitrary locus in the Drosophila genome.  相似文献   

4.
The phenotypic analysis of mice carrying germline mutations in protooncogenes is beginning to provide convincing genetic evidence for the important role that these genes play in mammalian development and differentiation. Two approaches are being taken to elucidate the biological function of proto-oncogenes in vivo. The first involves the molecular analysis of existing mouse developmental mutants, while the second approach involves the generation of specific germline mutations by gene targeting using homologous recombination in embryonic stem cells. Several key points have already emerged from these genetic approaches. First, many proto-oncogenes are important to more than one cell lineage and function both during embryogenesis and in the adult. Second, the patterns of expression of these genes provide only a guide to their biological function. Third, mutant phenotypes are generally less severe than would be expected from their expression patterns, suggesting that there may be functional overlap between two or more members of a gene family.  相似文献   

5.
6.
A rate-determining step in gene targeting is the generation of the targeting vector. We have developed bacteriophage gene targeting vectorology, which shortens the timeline of targeting vector construction. Using retro-recombination screening, we can rapidly isolate targeting vectors from an embryonic stem cell genomic library via integrative and excisive recombination. We have demonstrated that recombination can be used to introduce specific point mutations or unique restriction sites into gene targeting vectors via transplacement. Using the choline/ethanolamine kinase alpha and beta genes as models, we demonstrate that transplacement can also be used to introduce specifically a neo resistance cassette into a gene targeting phage. In our experience, the lambdaTK gene targeting system offers considerable flexibility and efficiency in TV construction, which makes generating multiple vectors in one week's time possible.  相似文献   

7.
Xie HB  Golic KG 《Genetics》2004,168(3):1477-1489
Following the advent of a gene targeting technique in Drosophila, different methods have been developed to modify the Drosophila genome. The initial demonstration of gene targeting in flies used an ends-in method, which generates a duplication of the target locus. The duplicated locus can then be efficiently reduced to a single copy by generating a double-strand break between the duplicated segments. This method has been used to knock out target genes by introducing point mutations. A derivative of this method is reported here. By using different homologous regions for the targeting and reduction steps, a complete deletion of the target gene can be generated to produce a definitive null allele. The breakpoints of the deletion can be precisely controlled. Unlike ends-out targeting, this method does not leave exogenous sequence at the deleted locus. Three endogenous genes, Sir2, Sirt2, and p53 have been successfully deleted using this method.  相似文献   

8.
Adeno-associated virus (AAV) vectors can transduce cells by several mechanisms, including (i) gene addition by chromosomal integration or episomal transgene expression or (ii) gene targeting by modification of homologous chromosomal sequences. The latter process can be used to correct a variety of mutations in chromosomal genes with high fidelity and specificity. In this study, we used retroviral vectors to introduce mutant alkaline phosphatase reporter genes into normal human cells and subsequently corrected these mutations with AAV gene targeting vectors. We find that increasing the length of homology between the AAV vector and the target locus improves gene correction rates, as does positioning the mutation to be corrected in the center of the AAV vector genome. AAV-mediated gene targeting increases with time and multiplicity of infection, similar to AAV-mediated gene addition. However, in contrast to gene addition, genotoxic stress did not affect gene targeting rates, suggesting that different cellular factors are involved. In the course of these studies, we found that (i) vector genomes less than half of wild-type size could be packaged as monomers or dimers and (ii) packaged dimers consist of inverted repeats with covalently closed hairpins at either end. These studies should prove helpful in designing AAV gene targeting vectors for basic research or gene therapy.  相似文献   

9.
The pattern of segmentation in the Drosophila embryo is controlled by at least 25 zygotically active genes and at least 20 maternally active genes. We have examined the pattern of expression of the protein product of the zygotically active segmentation gene fushi tarazu (ftz) at the cellular blastoderm stage in progeny of mutant females homozygous for each of six maternal-effect segmentation genes to observe the early effects of the maternal-effect genes on zygotic gene expression. The genes included exuperantia (a member of the anterior class of maternal-effect segmentation genes); staufen and vasa (members of the posterior class); and torso, trunk, and fs(1)N (members of the terminal class). Mutations in the genes caused a disruption of the normal pattern of ftz stripes in regions of the embryo where gene activity is known to be required. The ftz stripes provide a marker for segmental determination at the cellular blastoderm stage, making it possible to correlate aberrant patterns of ftz protein with defects in cuticle morphology at the end of embryogenesis. ftz protein expression in progeny of females mutant for combinations of the above genes was also examined. The changes in the ftz pattern in progeny of females doubly mutant for genes of the anterior and terminal classes or of the posterior and terminal classes can largely be understood as the result of the additive effects of the single mutations. In contrast, clearly nonadditive effects on the ftz pattern were seen when a mutation in a gene of the anterior class (exuperantia) was combined with mutations in posterior class genes.  相似文献   

10.
Two-thirds of cases of tuberous sclerosis complex (TSC) are sporadic and usually are attributed to new mutations, but unaffected parents sometimes have more than one affected child. We sought to determine how many of these cases represent germ-line mosaicism, as has been reported for other genetic diseases. In our sample of 120 families with TSC, 7 families had two affected children and clinically unaffected parents. These families were tested for mutations in the TSC1 and TSC2 genes, by Southern blotting and by single-strand conformational analysis. Unique variants were detected in six families. Each variant was present and identical in both affected children of a family but was absent in both parents and the unaffected siblings. Sequencing of the variants yielded two frameshift mutations, one missense mutation, and two nonsense mutations in TSC2 and one nonsense mutation in TSC1. To determine which parent contributed the affected gametes, the families were analyzed for linkage to TSC1 and TSC2, by construction of haplotypes with markers flanking the two genes. Linkage analysis and loss-of-heterozygosity studies indicated maternal origin in three families, paternal origin in one family, and either being possible in two families. To evaluate the possibility of low-level somatic mosaicism for TSC, DNA from lymphocytes of members of the six families were tested by allele-specific PCR. In all the families, the mutant allele was detected only in the known affected individuals. We conclude that germ-line mosaicism was present in five families with mutations in the TSC2 gene and in one family with the causative mutation in the TSC1 gene. The results have implications for genetic counseling of families with seemingly sporadic TSC.  相似文献   

11.
Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.  相似文献   

12.
Hirschsprung disease is a congenital malformation affecting 1 in 5000 live births. The absence of parasympathetic neuronal ganglia (Meissner, Auerbach) in the hindgut results in poor coordination of peristaltic movement, and a varying degree of constipation. Four different genes have been implicated in the pathogenesis of Hirschsprung disease: the RET tyrosine kinase receptor gene; one of its ligands, the glial cell line-derived neurotrophic factor (GDNF) gene; the endothelin receptor B (EDNRB) gene; and its ligand, endothelin-3 (EDN3). Recently, combinations of mutations in two of these genes (RET and GDNF) have been reported in Hirschsprung patients. We report a family with missense mutations in both the RET gene (R982C) and the EDNRB gene (G57S). In this family, three out of five members have the two mutations, but only one, a boy, has the Hirschsprung disease phenotype. This illustrates the complexity of the molecular background of Hirschsprung disease. Received: 23 January 1998 / Accepted: 24 March 1998  相似文献   

13.
Two new members of a family of putative hyaluronidase genes involved in glycosaminoglycan catabolism have been identified and mapped by FISH and YAC library screening to chromosome 7q31.3. One of these (HYALP1) is an expressed pseudogene with mutations in the genomic DNA and cDNA. The six members of the hyaluronidase family are grouped into two tightly linked triplets on human chromosomes 3p21.3 (HYAL1, HYAL2, and HYAL3) and 7q31.3 (HYAL4, SPAM1 (PH-20), and HYALP1). This arrangement could arise by an ancient cluster formation, followed by a more recent cluster block-duplication. All of the hyaluronidase genes have unique tissue-specific expression patterns as determined by Northern blot analysis of 23 human tissues. HYAL1, HYAL2, and HYALP1 are widely expressed, but HYAL3 is differentially expressed in bone marrow and testis, while HYAL4 is differentially expressed in placenta and skeletal muscle. SPAM1 (PH-20) was detectable only in testis by Northern blot as previously reported, but was detectable in fetal and placental cDNA libraries by PCR, suggesting a possible role for this gene during embryonic development.  相似文献   

14.
Cytochrome c oxidase (COX) deficiency is the most common cause of Leigh syndrome (LS). COX consists of ten nuclear-encoded and three mtDNA-encoded structural subunits. Although the nucleotide sequences of all 13 genes are known, no mutation was found in nuclear-encoded subunit genes of COX-deficiency patients. Zhu et al. (1998) and Tiranti et al. (1998) found nine mutations in the surfeit 1 (SURF1) gene in LS families with COX deficiency. The mouse surfeit gene cluster consists of six closely spaced housekeeping genes unrelated by sequence homology. Except for the Surf3 gene, the function is still not known. The juxtaposition of at least five of the surfeit genes is conserved between birds and mammals. We identified two novel mutations of SURF1 in a Japanese LS patient with COX deficiency using direct sequencing analysis. Firstly, a 2-bp deletion at nucleotide position 790 (790delAG) in exon 8 was found, which shifts the reading frame such that the mutant protein has a completely different amino acid sequence from codon 264 to the premature stop codon at 290. Secondly, we found a T-to-G transversion at nucleotide 820, resulting in the substitution of tyrosine by aspartic acid at codon 274 (Y274D). We also studied the parents' genes, and found that the Y274D mutation was in his father and the 790delAG mutation was in his mother heterozygously. Therefore, we concluded that the patient was a compound heterozygote with these mutations. These are the first pathogenetic SURF1 mutations identified in a Japanese family.  相似文献   

15.
16.
We evaluate here the use of real-time quantitative PCR (q-PCR) as a method for screening for homologous recombinants generated in mammalian cells from either conventional gene-targeting constructs or whole BAC-based constructs. Using gene-targeted events at different loci, we show that q-PCR is a highly sensitive and accurate method for screening for conventional gene targeting that can reduce the number of clones requiring follow-up screening by Southern blotting. We further compared q-PCR to fluorescent in situ hybridization (FISH) for the detection of gene-targeting events using full-length BAC-based constructs designed to introduce mutations either into one gene or simultaneously into two adjacent genes. We find that although BAC-based constructs appeared to have high rates of homologous recombination when evaluated by FISH, screening by FISH was prone to false positives that were detected by q-PCR. Our results demonstrate the utility of q-PCR as a screening tool for gene targeting and further highlight potential problems with the use of whole BAC-based constructs for homologous recombination.  相似文献   

17.
Familial hypercholesterolemia is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). It is mainly caused by mutations of the low-density lipoprotein receptor (LDLR) gene. Currently, the methods of whole genome sequencing or whole exome sequencing for screening mutations in familial hypercholesterolemia are not applicable in China due to high cost. We performed targeted exome sequencing of 167 genes implicated in the homozygous phenotype of a proband pedigree to identify candidate mutations, validated them in the family of the proband, studied the functions of the mutant protein, and followed up serum lipid levels after treatment. We discovered that exon 9 c.1268 T>C and exon 8 c.1129 T>G compound heterozygous mutations in the LDLR gene in the proband derived from the mother and father, respectively, in which the mutation of c.1129 T>G has not been reported previously. The mutant LDL-R protein had 57% and 52% binding and internalization functions, respectively, compared with that of the wild type. After 6 months of therapy, the LDL-C level of the proband decreased by more than 50% and the LDL-C of the other family members with heterozygous mutation also reduced to normal. Targeted exome sequencing is an effective method for screening mutation genes in familial hypercholesterolemia. The exon 8 and 9 mutations of the LDLR gene were pedigree mutations. The functions of the mutant LDL-R protein were decreased significantly compared with that of the wild type. Simvastatin plus ezetimibe was proven safe and effective in this preschool-age child.  相似文献   

18.
We explored the mitochondrial 12S rRNA and the tRNASer(UCN) genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNASer(UCN) genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNASer(UCN) gene. We report here the first mutational screening of the mitochondrial 12S rRNA and the tRNASer(UCN) genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene.  相似文献   

19.
Jung KH  Lee J  Dardick C  Seo YS  Cao P  Canlas P  Phetsom J  Xu X  Ouyang S  An K  Cho YJ  Lee GC  Lee Y  An G  Ronald PC 《PLoS genetics》2008,4(8):e1000164
Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号