首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The chaperonin GroEL drives its protein-folding cycle by cooperatively binding ATP to one of its two rings, priming that ring to become folding-active upon GroES binding, while simultaneously discharging the previous folding chamber from the opposite ring. The GroEL-ATP structure, determined by cryo-EM and atomic structure fitting, shows that the intermediate domains rotate downward, switching their intersubunit salt bridge contacts from substrate binding to ATP binding domains. These observations, together with the effects of ATP binding to a GroEL-GroES-ADP complex, suggest structural models for the ATP-induced reduction in affinity for polypeptide and for cooperativity. The model for cooperativity, based on switching of intersubunit salt bridge interactions around the GroEL ring, may provide general insight into cooperativity in other ring complexes and molecular machines.  相似文献   

2.
Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes   总被引:1,自引:0,他引:1  
The double-ring chaperonin GroEL and its lid-like cochaperonin GroES form asymmetric complexes that, in the ATP-bound state, mediate productive folding in a hydrophilic, GroES-encapsulated chamber, the so-called cis cavity. Upon ATP hydrolysis within the cis ring, the asymmetric complex becomes able to accept non-native polypeptides and ATP in the open, trans ring. Here we have examined the structural basis for this allosteric switch in activity by cryo-EM and single-particle image processing. ATP hydrolysis does not change the conformation of the cis ring, but its effects are transmitted through an inter-ring contact and cause domain rotations in the mobile trans ring. These rigid-body movements in the trans ring lead to disruption of its intra-ring contacts, expansion of the entire ring and opening of both the nucleotide pocket and the substrate-binding domains, admitting ATP and new substrate protein.  相似文献   

3.
In this work, we employ single-particle electron cryo-microscopy (cryo-EM) to reconstruct GroEL to approximately 4 A resolution with both D7 and C7 symmetry. Using a newly developed skeletonization algorithm and secondary structure element identification in combination with sequence-based secondary structure prediction, we demonstrate that it is possible to achieve a de novo Calpha trace directly from a cryo-EM reconstruction. The topology of our backbone trace is completely accurate, though subtle alterations illustrate significant differences from existing crystal structures. In the map with C7 symmetry, the seven monomers in each ring are identical; however, the subunits have a subtly different structure in each ring, particularly in the equatorial domain. These differences include an asymmetric salt bridge, density in the nucleotide-binding pocket of only one ring, and small shifts in alpha helix positions. This asymmetric conformation is different from previous asymmetric structures, including GroES-bound GroEL, and may represent a "primed state" in the chaperonin pathway.  相似文献   

4.
We present a reconstruction of native GroEL by electron cryomicroscopy (cryo-EM) and single particle analysis at 6 A resolution. alpha helices are clearly visible and beta sheet density is also visible at this resolution. While the overall conformation of this structure is quite consistent with the published X-ray data, a measurable shift in the positions of three alpha helices in the intermediate domain is observed, not consistent with any of the 7 monomeric structures in the Protein Data Bank model (1OEL). In addition, there is evidence for slight rearrangement or flexibility in parts of the apical domain. The 6 A resolution cryo-EM GroEL structure clearly demonstrates the veracity and expanding scope of cryo-EM and the single particle reconstruction technique for macromolecular machines.  相似文献   

5.
GroEL assists protein folding by preventing the interaction of partially folded molecules with other non-native proteins. It binds them, sequesters them, and then releases them so that they can fold in an ATP-driven cycle. Previous studies have also shown that protein substrates, GroES, and oligopeptides bind to partially overlapped sites on the apical domain surfaces of GroEL. In this study, we have determined the crystal structure at 3.0A resolution of a symmetric (GroEL-peptide)(14) complex. The binding of each of these small 12 amino acid residue peptides to GroEL involves interactions between three adjacent apical domains of GroEL. Each peptide interacts primarily with a single GroEL subunit. Residues R231 and R268 from adjacent subunits isolate each substrate-binding pocket, and prevent bound substrates from sliding into adjacent binding pockets. As a consequence of peptide binding, domains rotate and inter-domain interactions are greatly enhanced. The direction of rotation of the apical domain of each GroEL subunit is opposite to that of its intermediate domain. Viewed from outside, the apical domains rotate clockwise within one GroEL ring, while the ATP-induced apical domain rotation is counter-clockwise.  相似文献   

6.
The 13 angstroms resolution structures of GroEL bound to a single monomer of the protein substrate glutamine synthetase (GS(m)), as well as that of unliganded GroEL have been determined from a heterogeneous image population using cryo-electron microscopy (cryo-EM) coupled with single-particle image classification and reconstruction techniques. We combined structural data from cryo-EM maps and dynamic modeling, taking advantage of the known X-ray crystallographic structure and normal mode flexible fitting (NMFF) analysis, to describe the changes that occur in GroEL structure induced by GS(m) binding. The NMFF analysis reveals that the molecular movements induced by GS(m) binding propagate throughout the GroEL structure. The modeled molecular motions show that some domains undergo en bloc movements, while others show more complex independent internal movements. Interestingly, the substrate-bound apical domains of both the cis (GS(m)-bound ring) and trans (the opposite substrate-free ring) show counterclockwise rotations, in the same direction (though not as dramatic) as those documented for the ATP-GroEL-induced structure changes. The structural changes from the allosteric substrate protein-induced negative cooperativity between the GroEL rings involves upward concerted movements of both cis and trans equatorial domains toward the GS(m)-bound ring, while the inter-ring distances between the heptamer contact residues are maintained. Furthermore, the NMFF analysis identifies the secondary structural elements that are involved in the observed approximately 5 angstroms reduction in the diameter of the cavity opening in the unbound trans ring. Understanding the molecular basis of these substrate protein-induced structural changes across the heptamer rings provides insight into the origins of the allosteric negative cooperative effects that are transmitted over long distances (approximately 140 angstroms).  相似文献   

7.
In order to fold non-native proteins, chaperonin GroEL undergoes numerous conformational changes and GroES binding in the ATP-dependent reaction cycle. We constructed the real-time three-dimensional-observation system at high resolution using a newly developed fast-scanning atomic force microscope. Using this system, we visualized the GroES binding to and dissociation from individual GroEL with a lifetime of 6 s (k=0.17 s(-1)). We also caught ATP/ADP-induced open-closed conformational changes of individual GroEL in the absence of qGroES and substrate proteins. Namely, the ATP/ADP-bound GroEL can change its conformation 'from closed to open' without additional ATP hydrolysis. Furthermore, the lifetime of open conformation in the presence of ADP ( approximately 1.0 s) was apparently lower than those of ATP and ATP-analogs (2-3 s), meaning that ADP-bound open-form is structurally less stable than ATP-bound open-form. These results indicate that GroEL has at least two distinct open-conformations in the presence of nucleotide; ATP-bound prehydrolysis open-form and ADP-bound open-form, and the ATP hydrolysis in open-form destabilizes its open-conformation and induces the 'from open to closed' conformational change of GroEL.  相似文献   

8.
Elongation factor G (EF-G) catalyzes tRNA translocation on the ribosome. Here a cryo-EM reconstruction of the 70S*EF-G ribosomal complex at 7.3 A resolution and the crystal structure of EF-G-2*GTP, an EF-G homolog, at 2.2 A resolution are presented. EF-G-2*GTP is structurally distinct from previous EF-G structures, and in the context of the cryo-EM structure, the conformational changes are associated with ribosome binding and activation of the GTP binding pocket. The P loop and switch II approach A2660-A2662 in helix 95 of the 23S rRNA, indicating an important role for these conserved bases. Furthermore, the ordering of the functionally important switch I and II regions, which interact with the bound GTP, is dependent on interactions with the ribosome in the ratcheted conformation. Therefore, a network of interaction with the ribosome establishes the active GTP conformation of EF-G and thus facilitates GTP hydrolysis and tRNA translocation.  相似文献   

9.
Dephospho-coenzyme A kinase catalyzes the final step in CoA biosynthesis, the phosphorylation of the 3'-hydroxyl group of ribose using ATP as a phosphate donor. The protein from Haemophilus influenzae was cloned and expressed, and its crystal structure was determined at 2.0-A resolution in complex with ATP. The protein molecule consists of three domains: the canonical nucleotide-binding domain with a five-stranded parallel beta-sheet, the substrate-binding alpha-helical domain, and the lid domain formed by a pair of alpha-helices. The overall topology of the protein resembles the structures of nucleotide kinases. ATP binds in the P-loop in a manner observed in other kinases. The CoA-binding site is located at the interface of all three domains. The double-pocket structure of the substrate-binding site is unusual for nucleotide kinases. Amino acid residues implicated in substrate binding and catalysis have been identified. The structure analysis suggests large domain movements during the catalytic cycle.  相似文献   

10.
The chaperonin GroEL consists of a double-ring structure made of identical subunits and displays unusual allosteric properties caused by the interaction between its constituent subunits. Cooperative binding of ATP to a protein ring allows binding of GroES to that ring, and at the same time negative inter-ring cooperativity discharges the ligands from the opposite ring, thus driving the protein-folding cycle. Biochemical and electron microscopy analysis of wild type GroEL, a single-ring mutant (SR1), and two mutants with one inter-ring salt bridge of the chaperonin disrupted (E461K and E434K) indicate that these ion pairs form part of the interactions that allow the inter-ring allosteric signal to be transmitted. The wild type-like activities of the ion pair mutants at 25 degrees C are in contrast with their lack of inter-ring communication and folding activity at physiological temperatures. These salt bridges stabilize the inter-ring interface and maintain the inter-ring spacing so that functional communication between protein heptamers takes place. The characterization of GroEL hybrids containing different amounts of wild type and mutant subunits also indicates that as the number of inter-ring salt bridges increases the functional properties of the hybrids recover. Taken together, these results strongly suggest that inter-ring salt bridges form a stabilizing ring-shaped, ionic zipper that ensures inter-ring communication at the contact sites and therefore a functional protein-folding cycle. Furthermore, they regulate the chaperonin thermostat, allowing GroEL to distinguish physiological (37 degrees C) from stress temperatures (42 degrees C).  相似文献   

11.
Escherichia coli chaperonin GroEL consists of two stacked rings of seven identical subunits each. Accompanying binding of ATP and GroES to one ring of GroEL, that ring undergoes a large en bloc domain movement, in which the apical domain twists upward and outward. A mutant GroEL(AEX) (C138S,C458S,C519S,D83C,K327C) in the oxidized form is locked in a closed conformation by an interdomain disulfide cross-link and cannot hydrolyze ATP (Murai, N., Makino, Y., and Yoshida, M. (1996) J. Biol. Chem. 271, 28229-28234). By reconstitution of GroEL complex from subunits of both wild-type GroEL and oxidized GroEL(AEX), hybrid GroEL complexes containing various numbers of oxidized GroEL(AEX) subunits were prepared. ATPase activity of the hybrid GroEL containing one or two oxidized GroEL(AEX) subunits per ring was about 70% higher than that of wild-type GroEL. Based on the detailed analysis of the ATPase activity, we concluded that inter-ring negative cooperativity was lost in the hybrid GroEL, indicating that synchronized opening of the subunits in one ring is necessary for the negative cooperativity. Indeed, hybrid GroEL complex reconstituted from subunits of wild-type and GroEL mutant (D398A), which is ATPase-deficient but can undergo domain opening motion, retained the negative cooperativity of ATPase. In contrast, the ability of GroEL to assist protein folding was impaired by the presence of a single oxidized GroEL(AEX) subunit in a ring. Taken together, cooperative conformational transitions in GroEL rings ensure the functional communication between the two rings of GroEL.  相似文献   

12.
The interaction of GroEL with different denatured forms of glyceraldehyde-3-phosphate dehydrogenase* (GAPDH) has been investigated. GroEL does not prevent thermal denaturation of GAPDH, but effectively interacts with the thermodenatured enzyme, thus preventing the aggregation of denatured molecules. Binding of the thermodenatured GAPDH shifts the Tm value of the GroEL thermodenaturation curve by 3 degrees towards higher temperatures and increases the DeltaHcal value 1.44-fold, indicating a significant increase in the thermal stability of the resulting complex. GAPDH thermodenatured in the presence of GroEL cannot be reactivated by the addition of GroES, Mg2+, and ATP. In contrast, GAPDH denatured in guanidine hydrochloride (GAPDHden) is reactivated in the presence of GroEL, GroES, Mg2+, and ATP, yielding 11-15% of its original activity, while the spontaneous reactivation yields only 2-3%. The oxidation of GAPDH with hydrogen peroxide in the presence of 4 M guanidine hydrochloride results in the formation of the enzyme (GAPDHox) that cannot acquire its native conformation and binds to GroEL irreversibly. Binding of GAPDHox to one of the GroEL rings completely inhibits the GroEL-assisted reactivation of GAPDHden, but does not affect the GroEL-assisted reactivation of lactate dehydrogenase (LDH). The data suggest that LDH can be successfully reactivated due to the binding of the denatured molecules to the apical domain of the opposite GroEL ring with their subsequent release into the solution without encapsulation (trans-mechanism). In contrast, GAPDH requires the hydrophilic cavity for the reactivation (cis-mechanism).  相似文献   

13.
Preuss M  Miller AD 《FEBS letters》2000,466(1):75-79
The affinity of four short peptides for the Escherichia coli molecular chaperone GroEL was studied in the presence of the co-chaperone GroES and nucleotides. Our data show that binding of GroES to one ring enhances the interaction of the peptides with the opposite GroEL ring, a finding that was related to the structural readjustments in GroEL following GroES binding. We further report that the GroEL/GroES complex has a high affinity for peptides during ATP hydrolysis when protein substrates would undergo repeated cycles of assisted folding. Although we could not determine at which step(s) during the cycle our peptides interacted with GroEL, we propose that successive state changes in GroEL during ATP hydrolysis may create high affinity complexes and ensure maximum efficiency of the chaperone machinery under conditions of protein folding.  相似文献   

14.
Nucleotide regulates the affinity of the bacterial chaperonin GroEL for protein substrates. GroEL binds protein substrates with high affinity in the absence of ATP and with low affinity in its presence. We report the crystal structure of (GroEL-KMgATP)(14) refined to 2.0 A resolution in which the ATP triphosphate moiety is directly coordinated by both K(+) and Mg(2+). Upon the binding of KMgATP, we observe previously unnoticed domain rotations and a 102 degrees rotation of the apical domain surface helix I. Two major consequences are a large lateral displacement of, and a dramatic reduction of hydrophobicity in, the apical domain surface. These results provide a basis for the nucleotide-dependent regulation of protein substrate binding and suggest a mechanism for GroEL-assisted protein folding by forced unfolding.  相似文献   

15.
The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100° domain rotation constituting the "power stroke" that ejects substrate into the folding chamber.  相似文献   

16.
分子伴侣GroE系统能量传递机制的研究   总被引:1,自引:0,他引:1  
用SwissPDBViewer软件对分子伴侣GroE系统与底物的相互作用进行了模拟 ,结果表明 :GroEL顶端结构域在GroES和靶蛋白结合之后发生了明显的变化 ;GroEL的cis环上有与三磷酸腺苷ATP相结合的位点 ,ATP水解之后形成的ADP与活性中心的残基相结合 ,而这种结合除导致残基Thr30的构型发生了变化之外 ,其它残基的空间位置和构型基本保持不变 ,暗示其它残基在能量传递过程中形成了刚性骨架 ,而与ADP分子磷酸键结合的残基Thr30则是能量传递的力点。  相似文献   

17.
The chaperonin GroEL consists of a double ring structure made of identical subunits that display different modes of allosteric communication. The protein folding cycle requires the simultaneous positive intra-ring and negative inter-ring cooperativities of ATP binding. This ensures GroES binding to one ring and release of the ligands from the opposite one. To better characterize inter-ring allosterism, the thermal stability as well as the temperature dependence of the functional and conformational properties of wild type GroEL, a single ring mutant (SR1) and two single point mutants suppressing one interring salt bridge (E434K and E461K) were studied. The results indicate that ionic interactions at the two interring contact sites are essential to maintain the negative cooperativity for protein substrate binding and to set the protein thermostat at 39 degrees C. These electrostatic interactions contribute distinctly to the stability of the inter-ring interface and the overall protein stability, e.g. the E434K thermal inactivation curve is shifted to lower temperatures, and its unfolding temperature and activation energy are also lowered. An analysis of the ionic interactions at the inter-ring contact sites reveals that at the so called "left site" a network of electrostatic interactions involving three charged residues might be established, in contrast to what is found at the "right site" where only two oppositely charged residues interact. Our data suggest that electrostatic interactions stabilize protein-protein interfaces depending on both the number of ionic interactions and the number of residues engaged in each of these interactions. In the case of GroEL, this combination sets the thermostat of the protein so that the chaperonin distinguishes physiological from stress temperatures.  相似文献   

18.
The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with reorientation of the trans ring apical domains. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring with polypeptide binding first, which stimulates the ATP-dependent dissociation of the cis complex (by 20- to 50-fold), followed by GroES binding. These results indicate that, in the presence of nonnative protein, GroEL alternates its rings as folding-active cis complexes, expending only one round of seven ATPs per folding cycle.  相似文献   

19.
PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK.  相似文献   

20.
Recent experimental advances in producing density maps from cryo-electron microscopy (cryo-EM) have challenged theorists to develop improved techniques to provide structural models that are consistent with the data and that preserve all the local stereochemistry associated with the biomolecule. We develop a new technique that maintains the local geometry and chemistry at each stage of the fitting procedure. A geometric simulation is used to drive the structure from some appropriate starting point (a nearby experimental structure or a modeled structure) toward the experimental density, via a set of small incremental motions. Structural motifs such as α-helices can be held rigid during the fitting procedure as the starting structure is brought into alignment with the experimental density. After validating this procedure on simulated data for adenylate kinase and lactoferrin, we show how cryo-EM data for two different GroEL structures can be fit using a starting x-ray crystal structure. We show that by incorporating the correct local stereochemistry in the modeling, structures can be obtained with effective resolution that is significantly higher than might be expected from the nominal cryo-EM resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号