首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the pentameric ligand-gated ion channel ELIC has recently provided first insight into the architecture of the family at high resolution, its detailed investigation was so far prevented by the fact that activating ligands were unknown. Here we describe a study on the functional characterization of ELIC by electrophysiology and X-ray crystallography. ELIC is activated by a class of primary amines that include the neurotransmitter GABA at high micro- to millimolar concentrations. The ligands bind to a conserved site and evoke currents that slowly desensitize over time. The protein forms cation selective channels with properties that resemble the nicotinic acetylcholine receptor. The high single channel conductance and the comparably simple functional behavior make ELIC an attractive model system to study general mechanisms of ion conduction and gating in this important family of neurotransmitter receptors.  相似文献   

2.
3.
Commentary to:

Hilf RJ, Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 2008; 452:375-80.  相似文献   

4.
Crystal structures of Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated prokaryotic homologue of pentameric ligand-gated ion channel (LGIC) from G. violaceus, have provided high-resolution models of the channel architecture and its role in selective ion conduction and drug binding. However, it is still unclear which functional states of the LGIC gating scheme these crystal structures represent. Much of this uncertainty arises from a lack of thorough understanding of the functional properties of these prokaryotic channels. To elucidate the molecular events that constitute gating, we have carried out an extensive characterization of GLIC function and dynamics in reconstituted proteoliposomes by patch clamp measurements and EPR spectroscopy. We find that GLIC channels show rapid activation upon jumps to acidic pH followed by a time-dependent loss of conductance because of desensitization. GLIC desensitization is strongly coupled to activation and is modulated by voltage, permeant ions, pore-blocking drugs, and membrane cholesterol. Many of these properties are parallel to functions observed in members of eukaryotic LGIC. Conformational changes in loop C, measured by site-directed spin labeling and EPR spectroscopy, reveal immobilization during desensitization analogous to changes in LGIC and acetylcholine binding protein. Together, our studies suggest conservation of mechanistic aspects of desensitization among LGICs of prokaryotic and eukaryotic origin.  相似文献   

5.
The Cys-loop pentameric ligand-gated ion channel receptors: 50 years on   总被引:1,自引:0,他引:1  
This year, 2011, the Department of Pharmacology at the University of Alberta celebrated its 50th anniversary. This timeframe covers nearly the entire history of Cys-loop pentameric ligand-gated ion channel (pLGIC) research. In this review we consider how major technological advancements affected our current understanding of pLGICs, and highlight the contributions made by members of our department. The individual at the center of our story is Susan Dunn; her passing earlier this year has robbed the Department of Pharmacology and the research community of a most insightful colleague. Her dissection of ligand interactions with the nAChR, together with their interpretation, was the hallmark of her extensive collaborations with Michael Raftery. Here, we highlight some electrophysiological studies from her laboratory over the last few years, using the technique that she introduced to the department in Edmonton, the 2-electrode voltage-clamp of Xenopus oocytes. Finally, we discuss some single-channel studies of the anionic GlyR and GABA(A)R that prefaced the introduction of this technique to her laboratory.  相似文献   

6.
The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2′) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2′A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.  相似文献   

7.
Cholesterol is an essential component of cell membranes, and is required for mammalian pentameric ligand-gated ion channel (pLGIC) function. Computational studies suggest direct interactions between cholesterol and pLGICs but experimental evidence identifying specific binding sites is limited. In this study, we mapped cholesterol binding to Gloeobacter ligand-gated ion channel (GLIC), a model pLGIC chosen for its high level of expression, existing crystal structure, and previous use as a prototypic pLGIC. Using two cholesterol analogue photolabeling reagents with the photoreactive moiety on opposite ends of the sterol, we identified two cholesterol binding sites: an intersubunit site between TM3 and TM1 of adjacent subunits and an intrasubunit site between TM1 and TM4. In both the inter- and intrasubunit sites, cholesterol is oriented such that the 3‑OH group points toward the center of the transmembrane domains rather than toward either the cytosolic or extracellular surfaces. We then compared this binding to that of the cholesterol metabolite, allopregnanolone, a neurosteroid that allosterically modulates pLGICs. The same binding pockets were identified for allopregnanolone and cholesterol, but the binding orientation of the two ligands was markedly different, with the 3‑OH group of allopregnanolone pointing to the intra- and extracellular termini of the transmembrane domains rather than to their centers. We also found that cholesterol increases, whereas allopregnanolone decreases the thermal stability of GLIC. These data indicate that cholesterol and neurosteroids bind to common hydrophobic pockets in the model pLGIC, GLIC, but that their effects depend on the orientation and specific molecular interactions unique to each sterol.  相似文献   

8.
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and on atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies.  相似文献   

9.
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and on atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies.  相似文献   

10.
Pentameric ligand-gated ion channels (pLGICs) are crucial mediators of electrochemical signal transduction in various organisms from bacteria to humans. Lipids play an important role in regulating pLGIC function, yet the structural bases for specific pLGIC-lipid interactions remain poorly understood. The bacterial channel ELIC recapitulates several properties of eukaryotic pLGICs, including activation by the neurotransmitter GABA and binding and modulation by lipids, offering a simplified model system for structure–function relationship studies. In this study, functional effects of noncanonical amino acid substitution of a potential lipid-interacting residue (W206) at the top of the M1-helix, combined with detergent interactions observed in recent X-ray structures, are consistent with this region being the location of a lipid-binding site on the outward face of the ELIC transmembrane domain. Coarse-grained and atomistic molecular dynamics simulations revealed preferential binding of lipids containing a positive charge, particularly involving interactions with residue W206, consistent with cation-π binding. Polar contacts from other regions of the protein, particularly M3 residue Q264, further support lipid binding via headgroup ester linkages. Aromatic residues were identified at analogous sites in a handful of eukaryotic family members, including the human GABAA receptor ε subunit, suggesting conservation of relevant interactions in other evolutionary branches. Further mutagenesis experiments indicated that mutations at this site in ε-containing GABAA receptors can change the apparent affinity of the agonist response to GABA, suggesting a potential role of this site in channel gating. In conclusion, this work details type-specific lipid interactions, which adds to our growing understanding of how lipids modulate pLGICs.  相似文献   

11.
Pentameric ligand-gated ion channels (pLGICs) are receptor proteins that are sensitive to their membrane environment, but the mechanism for how lipids modulate function under physiological conditions in a state dependent manner is not known. The glycine receptor is a pLGIC whose structure has been resolved in different functional states. Using a realistic model of a neuronal membrane coupled with coarse-grained molecular dynamics simulations, we demonstrate that some key lipid-protein interactions are dependent on the receptor state, suggesting that lipids may regulate the receptor’s conformational dynamics. Comparison with existing structural data confirms known lipid binding sites, but we also predict further protein-lipid interactions including a site at the communication interface between the extracellular and transmembrane domain. Moreover, in the active state, cholesterol can bind to the binding site of the positive allosteric modulator ivermectin. These protein-lipid interaction sites could in future be exploited for the rational design of lipid-like allosteric drugs.  相似文献   

12.
13.
Protein function depends on conformational flexibility and folding stability. Loose packing of hydrophobic cores is not infrequent in proteins, as the enhanced flexibility likely contributes to their biological function. Here, using experimental and computational approaches, we show that eukaryotic pentameric ligand-gated ion channels are characterized by loose packing of their extracellular domain β-sandwich cores, and that loose packing contributes to their ability to rapidly switch from closed to open channel states in the presence of ligand. Functional analyses of GABA(A) receptors show that increasing the β-core packing disrupted GABA-mediated currents, with impaired GABA efficacy and slowed GABA current activation and desensitization. We propose that loose packing of the hydrophobic β-core developed as an evolutionary strategy aimed to facilitate the allosteric mechanisms of eukaryotic pentameric ligand-gated ion channels.  相似文献   

14.
Pentameric ligand-gated ion channels (pLGICs) and their lipid microenvironments appear to have acquired mutually adaptive traits along evolution: 1) the three-ring architecture of their transmembrane (TM) region; 2) the ability of the outermost TM ring to convey lipid signals to the middle ring, which passes them on to the central pore ring, and 3) consensus motifs for sterol recognition in all pLGICs. Hopanoids are triterpenoid fossil lipids that constitute invaluable biomarkers for tracing evolution at the molecular scale. The cyanobacterium Gloeobacter violaceus is the oldest known living organism in which the X-ray structure of its pLGIC, GLIC, reveals the presence of the above attributes and, as discussed in this review, the ability to bind hopanoids. ELIC, the pLGIC from the bacillus Erwinia chrysanthemi is the only other known case to date. Both prokaryotes lack cholesterol but their pLGICs exhibit the same sterol motifs as mammalian pLGIC. This remarkable conservation suggests that the association of sterols and hopanoid surrogate molecules arose from the early need in prokaryotes to stabilize pLGIC TM regions by means of relatively rigid lipid molecules. The conservation of these phenotypic traits along such a long phylogenetic span leads us to suggest the possible co-evolution of these sterols with pLGICs.  相似文献   

15.
Identification of bacterial and archaeal counterparts to eukaryotic ion channels has greatly facilitated studies of structural biophysics of the channels. Often, searches based only on sequence alignment tools are inadequate for discovering such distant bacterial and archaeal counterparts. We address the discovery of bacterial and archaeal members of the Pentameric Ligand-Gated Ion Channel (pLGIC) family by a combination of four computational methods. One domain-based method involves retrieval of proteins with pLGIC-relevant domains by matching those domains to previously established domain templates in the InterPro family of databases. The second domain-based method involves searches using ungapped de-novo motifs discovered by MEME which were trained with well characterized members of the pLGIC family. The third and fourth methods involve the use of two sequence alignment search algorithms BLASTp and psiBLAST respectively. The sequences returned from all methods were screened by having the correct topology for pLGIC's, and by returning an annotated member of this family as one of the first ten hits using BLASTp against a comprehensive database of eukaryotic proteins. We found the domain based searches to have high specificity but low sensitivity, while the sequence alignment methods have higher sensitivity but lower specificity. The four methods together discovered 69 putative bacterial and archaeal members of the pLGIC family. We ranked and divide the 69 proteins into groups according to the similarity of their domain compositions with known eukaryotic pLGIC's. One especially notable group is more closely related to eukaryotic pLGIC's than to any other known protein family, and has the overall topology of pLGIC's, but the functional domains they contain are sufficiently different from those found in known pLGIC's that they do not score very well against the pLGIC domain templates. We conclude that multiple methods used in a coordinated fashion outperform any single method for identifying likely distant bacterial and archaeal proteins that may provide useful models for important eukaryotic channel function. We note also that the methods used here are largely standard and readily accessible. The novelty is in the effectiveness of a strategy that combines these methods for identifying bacterial and archea relatives of this family. Therefore the paper may serve as a template for a broad group of workers to reliably identify bacterial and archaeal counterparts to eukaryotic proteins.  相似文献   

16.
Identification of bacterial and archaeal counterparts to eukaryotic ion channels has greatly facilitated studies of structural biophysics of the channels. Often, searches based only on sequence alignment tools are inadequate for discovering such distant bacterial and archaeal counterparts. We address the discovery of bacterial and archaeal members of the Pentameric Ligand-Gated Ion Channel (pLGIC) family by a combination of four computational methods. One domain-based method involves retrieval of proteins with pLGIC-relevant domains by matching those domains to previously established domain templates in the InterPro family of databases. The second domain-based method involves searches using ungapped de-novo motifs discovered by MEME which were trained with well characterized members of the pLGIC family. The third and fourth methods involve the use of two sequence alignment search algorithms BLASTp and psiBLAST respectively. The sequences returned from all methods were screened by having the correct topology for pLGIC's, and by returning an annotated member of this family as one of the first ten hits using BLASTp against a comprehensive database of eukaryotic proteins. We found the domain based searches to have high specificity but low sensitivity, while the sequence alignment methods have higher sensitivity but lower specificity. The four methods together discovered 69 putative bacterial and archaeal members of the pLGIC family. We ranked and divide the 69 proteins into groups according to the similarity of their domain compositions with known eukaryotic pLGIC's. One especially notable group is more closely related to eukaryotic pLGIC's than to any other known protein family, and has the overall topology of pLGIC's, but the functional domains they contain are sufficiently different from those found in known pLGIC's that they do not score very well against the pLGIC domain templates. We conclude that multiple methods used in a coordinated fashion outperform any single method for identifying likely distant bacterial and archaeal proteins that may provide useful models for important eukaryotic channel function. We note also that the methods used here are largely standard and readily accessible. The novelty is in the effectiveness of a strategy that combines these methods for identifying bacterial and archea relatives of this family. Therefore the paper may serve as a template for a broad group of workers to reliably identify bacterial and archaeal counterparts to eukaryotic proteins.  相似文献   

17.
Ligand-Gated Ion Channels (LGIC) are polymeric transmembrane proteins involved in the fast response to numerous neurotransmitters. All these receptors are formed by homologous subunits and the last two decades revealed an unexpected wealth of genes coding for these subunits. The Ligand-Gated Ion Channel database (LGICdb) has been developed to handle this increasing amount of data. The database aims to provide only one entry for each gene, containing annotated nucleic acid and protein sequences. The repository is carefully structured and the entries can be retrieved by various criteria. In addition to the sequences, the LGICdb provides multiple sequence alignments, phylogenetic analyses and atomic coordinates when available. The database is accessible via the World Wide Web (http://www.pasteur.fr/recherche/banques/LGIC /LGIC.html), where it is continuously updated. The version 16 (September 2000) available for download contained 333 entries covering 34 species.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号