首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In various sediments in which Fe(III) reduction was the terminal electron-accepting process, [14C]glucose was fermented to 14C-fatty acids in a manner similar to that observed in methanogenic sediments. These results are consistent with the hypothesis that, in Fe(III)-reducing sediments, fermentable substrates are oxidized to carbon dioxide by the combined activity of fermentative bacteria and fatty acid-oxidizing, Fe(III)-reducing bacteria.  相似文献   

2.
The potential for extracellular electron shuttles to stimulate RDX biodegradation was investigated with RDX-contaminated aquifer material. Electron shuttling compounds including anthraquinone-2,6-disulfonate (AQDS) and soluble humic substances stimulated RDX mineralization in aquifer sediment. RDX mass-loss was similar in electron shuttle amended and donor-alone treatments; however, the concentrations of nitroso metabolites, in particular TNX, and ring cleavage products (e.g., HCHO, MEDINA, NDAB, and NH4 +) were different in shuttle-amended incubations. Nitroso metabolites accumulated in the absence of electron shuttles (i.e., acetate alone). Most notably, 40–50% of [14C]-RDX was mineralized to 14CO2 in shuttle-amended incubations. Mineralization in acetate amended or unamended incubations was less than 12% within the same time frame. The primary differences in the presence of electron shuttles were the increased production of NDAB and formaldehyde. NDAB did not further degrade, but formaldehyde was not present at final time points, suggesting that it was the mineralization precursor for Fe(III)-reducing microorganisms. RDX was reduced concurrently with Fe(III) reduction rather than nitrate or sulfate reduction. Amplified 16S rDNA restriction analysis (ARDRA) indicated that unique Fe(III)-reducing microbial communities (β- and γ-proteobacteria) predominated in shuttle-amended incubations. These results demonstrate that indigenous Fe(III)-reducing microorganisms in RDX-contaminated environments utilize extracellular electron shuttles to enhance RDX mineralization. Electron shuttle-mediated RDX mineralization may become an effective in situ option for contaminated environments.  相似文献   

3.
Production of 14CO2 from [1,2-14C] dichloroethene (DCE) or [1,2-14C] vinyl chloride (VC) was quantified in aquifer and stream-bed sediment microcosms to evaluate the potential for microbial mineralization as a pathway for DCE and VC biodegradation under aerobic, Fe(III)-reducing, SO4-reducing, and methanogenic conditions. Mineralization of [1,2-14C] DCE and [1,2-14C] VC to 14CO2 decreased under increasingly reducing conditions, but significant mineralization was observed for both sediments even under anaerobic conditions. VC mineralization decreased in the order of aerobic > Fe(III)-reducing > SO4-reducing > methanogenic conditions. For both sediments, VC mineralization was greater than DCE mineralization under all electron-accepting conditions examined. For both sediments, DCE mineralization was at least two times greater under aerobic conditions than under anaerobic conditions. Although significant microbial mineralization of DCE was observed under anaerobic conditions, recovery of 14CO2 did not differ substantially between anaerobic treatments.  相似文献   

4.
Eleven strains of methanogenic bacteria were divided into two groups on the basis of the directionality (oxidative or reductive) of their citric acid pathways. These pathways were readily identified for most methanogens from the patterns of carbon atom labeling in glutamate, following growth in the presence of [2-13C]acetate. All used noncyclic pathways, but members of the family Methanosarcinaceae were the only methanogens found to use the oxidative direction. Methanococcus jannaschii failed to incorporate carbon from acetate despite transmembrane equilibration comparable to other weak acids. This organism was devoid of detectable activities of the acetate-incorporating enzymes acetyl coenzyme A synthetase, acetate kinase, and phosphotransacetylase. However, incorporation of [1-13C]-, [2-13C]-, or [3-13C]pyruvate during the growth of M. jannaschii was possible and resulted in labeling patterns indicative of a noncyclic citric acid pathway operating in the reductive direction to synthesize amino acids. Carbohydrates were labeled consistent with glucogenesis from pyruvate. Leucine, isoleucine, phenylalanine, lysine, formate, glycerol, and mevalonate were incorporated when supplied to the growth medium. Lysine was preferentially incorporated into the lipid fraction, suggesting a role as a phytanyl chain precursor.  相似文献   

5.
Tropical forests are an important source of atmospheric methane (CH4), and recent work suggests that CH4 fluxes from humid tropical environments are driven by variations in CH4 production, rather than by bacterial CH4 oxidation. Competition for acetate between methanogenic archaea and Fe(III)‐reducing bacteria is one of the principal controls on CH4 flux in many Fe‐rich anoxic environments. Upland humid tropical forests are also abundant in Fe and are characterized by high organic matter inputs, steep soil oxygen (O2) gradients, and fluctuating redox conditions, yielding concomitant methanogenesis and bacterial Fe(III) reduction. However, whether Fe(III)‐reducing bacteria coexist with methanogens or competitively suppress methanogenic acetate use in wet tropical soils is uncertain. To address this question, we conducted a process‐based laboratory experiment to determine if competition for acetate between methanogens and Fe(III)‐reducing bacteria influenced CH4 production and C isotope composition in humid tropical forest soils. We collected soils from a poor to moderately drained upland rain forest and incubated them with combinations of 13C‐bicarbonate, 13C‐methyl labeled acetate (13CH3COO?), poorly crystalline Fe(III), or fluoroacetate. CH4 production showed a greater proportional increase than Fe2+ production after competition for acetate was alleviated, suggesting that Fe(III)‐reducing bacteria were suppressing methanogenesis. Methanogenesis increased by approximately 67 times while Fe2+ production only doubled after the addition of 13CH3COO?. Large increases in both CH4 and Fe2+ production also indicate that the two process were acetate limited, suggesting that acetate may be a key substrate for anoxic carbon (C) metabolism in humid tropical forest soils. C isotope analysis suggests that competition for acetate was not the only factor driving CH4 production, as 13C partitioning did not vary significantly between 13CH3COO? and 13CH3COO?+Fe(III) treatments. This suggests that dissimilatory Fe(III)‐reduction suppressed both hydrogenotrophic and aceticlastic methanogenesis. These findings have implications for understanding the CH4 biogeochemistry of highly weathered wet tropical soils, where CH4 efflux is driven largely by CH4 production.  相似文献   

6.
Summary The anaerobic degradation of propionate to acetate and methane by a defined sulfidogenic syntrophic co-culture consisting of Syntrophobacter wolinii and Desulfovibrio G11, and a new thermophilic, methanogenic consortium T13 was studied. Tracer experiments using (14C) propionate produced evidence for the generally accepted biochemical pathway involving methylmalonyl-CoA as an intermediate in the degradation of propionate. The degradation of (1-14C) propionate led exclusively to the formation of 14CO2 by S. wolinii/D. G11 and to the formation of 14CH4 by the methanogenic consortium T13. The conversion of either (2-14) or (3-14) propionate by S. wolinii/D. G11 resulted in uniform labelled acetate as the endproduct. The methanogenic consortium formed (U-14C) acetate from (2-14) and (3-14) propionate as an intermediary product followed by aceticlastic splitting to yield equivalent amounts of 14CO2 and 14CH4.  相似文献   

7.
Studies on the biosynthesis of coenzyme F420 in methanogenic bacteria   总被引:4,自引:0,他引:4  
Coenzyme F420 is a 8-hydroxy-5-deazaflavin present in methanogenic bacteria. We have investigated whether the pyrimidine ring of the deazaflavin originates from guanine as in flavin biosynthesis, in which the pyrimidine ring of guanine is conserved. For this purpose the incorporation of [2-14C]guanine and of [8-14C]guanine into F420 by growing cultures of Methanobacterium thermoautotrophicum was studied. Only in the case of [2-14C]guanine did F420 become labeled. The specific radioactivity of the deazaflavin and of guanine isolated from nucleic acids of [2-14C]guanine grown cells were identical. This finding suggests that the pyrimidine ring of the deazaflavin and of flavins are synthesized by the same pathway.F420 did not become labeled when M. thermoautotrophicum was grown in the presence of methyl-[14C] methionine, [U-14C]phenylalanine or [U-14C]tyrosine. This excludes that C-5 of the deazaflavin is derived from the methyl group of methionine and that the benzene ring comes from phenylalanine or tyrosine.  相似文献   

8.
The epimastigote or culture form of Trypanosoma cruzi oxidizes [3-14C] pyruvate and [2-14C] acetate to 14CO2 without an apparent increase in overall respiration. This oxidation takes place through the tricarboxylic acid cycle as shown by (a) the incorporation of substrate 14C into cycle intermediates; (b) the earlier liberation of acetate carboxyl carbon as CO2; and (c) the characteristic intramolecular distribution of pyruvate and acetate carbon atoms in the skeletal carbon of aspartic and glutamic acids. Upon oxidation of [3-14C] pyruvate and [2-14C] acetate, two of the products, alanine and glutamic acid, are found to account for more than 50% of incorporated 14C; labeling of alanine predominates with [3-14C] pyruvate while labeling of glutamic acid predominates with [2-14C] acetate. Using [1- or 6-14C] glucose as substrate, the pattern of 14C distribution in soluble metabolites closely resembles that obtained with [3-14C] pyruvate, in accordance with the joint operation of the Embden-Meyerhof pathway and Krebs cycle. The cycle operation depends on electron transport through the mitochondrial respiratory chain, since antimycin A, at a relatively low concentration, inhibits the oxidation of [2-14C] acetate to 14CO2, to the same extent as the parasite respiration. Though functional in T. cruzi epimastigotes, the oxidative role of the Krebs’ cycle is apparently limited by the absence of an efficient oxidative apparatus. The cycle operation does, however, constitute an important source of skeletal carbon for the biosynthesis of amino acids and can contribute to the process of glycogenesis.  相似文献   

9.
The rates, products, and controls of the metabolism of fermentation intermediates in the sediments of a eutrophic lake were examined. 14C-fatty acids were directly injected into sediment subcores for turnover rate measurements. The highest rates of acetate turnover were in surface sediments (0- to 2-cm depth). Methane was the dominant product of acetate metabolism at all depths. Simultaneous measurements of acetate, propionate, and lactate turnover in surface sediments gave turnover rates of 159, 20, and 3 μM/h, respectively. [2-14C]propionate and [U-14C]lactate were metabolized to [14C]acetate, 14CO2, and 14CH4. [14C]formate was completely converted to 14CO2 in less than 1 min. Inhibition of methanogenesis with chloroform resulted in an immediate accumulation of volatile fatty acids and hydrogen. Hydrogen inhibited the metabolism of C3-C5 volatile fatty acids. The rates of fatty acid production were estimated from the rates of fatty acid accumulation in the presence of chloroform or hydrogen. The mean molar rates of production were acetate, 82%; propionate, 13%; butyrates, 2%; and valerates, 3%. A working model for carbon and electron flow is presented which illustrates that fermentation and methanogenesis are the predominate steps in carbon flow and that there is a close interaction between fermentative bacteria, acetogenic hydrogen-producing bacteria, and methanogens.  相似文献   

10.
About ScienceDirect 《BBA》1978,504(3):466-467
Culture of Trypanosoma cruzi (Tulahuen strain) in the presence of ethidium bromide (1–20 μg/ml) resulted in dyskinetoplasty and inhibition of growth, to an extent depending on the dye concentration and the medium composition. The ethidium bromide-induced dyskinetoplasty caused a decrease of (a) the cytochrome content of epimastigotes (a,a3 and b species); (b) the rate of respiration (endogenous or supported by D-glucose); and (c) the rate of production of 14CO2 from [2-14C]acetate and [1-14C]glucose. [2-14C]Acetate oxidation to 14CO2 was affected by dyskinetoplasty more than [1-14C]glucose oxidation, particularly at the exponential growth phase. With dyskinetoplastic epimastigotes, diminution of 14CO2 production from [2-14C]acetate largely exceeded that of oxygen uptake, while with [1-14C]glucose, 14CO2production and respiration were affected to about the same extent. Dyskinetoplasty also decreased the incorporation of [2-14C]acetate carbon into intermediates of the tricarboxylic acid cycle and related amino acids, and modified the distribution pattern of 14C in accordance with the decrease of respiration. Reduction of cytochrome content of epimastigotes by restriction of heme compounds during growth decreased 14CO2 production from [2-14C]acetate, like the ethidium-induced dyskinetoplasty. The same occurred after inhibition of electron transfer by antimycin and cyanide, though to a much more significant extent, thus confirming the functional association of electron transport at the mitochondrial cytochrome system of T. cruzi and the enzymatic reactions of the tricarboxylic acid cycle.  相似文献   

11.
《Insect Biochemistry》1988,18(8):867-872
Activity of the corpora allata (CA) in vitro of adult female Gryllus bimaculatus was studied following incorporation of radioactivity from [2-14C]acetate and l-[methyl-3H]methionine into juvenile hormone III (JH III) and its immediate precursor methyl farnesoate (MF). Spontaneously active glands from females reared at 27°C utilized exogenous labelled acetate extensively for synthesis of MF and JH III (incorporation 80–84% at 2 mM acetate). 10−7 to 10−5 M exogenous JH III in the incubation medium had no effect on the rate of JH biosynthesis in spontaneously active glands. At 10−4 M JH III incorporation of acetate into JH III was reduced. The amount of MF was also lowered. JH III treatment (10−8–10−6 M) of spontaneously inactive glands led to an increase in the amount of MF. This increase was due to a de novo synthesis. Exogenous farnesol (20–200 μM) increased JH III biosynthesis and the amount of MF, but suppressed [2-14C]acetate incorporation. Dilution of the endogenous precursors is probably the most important cause of this suppression. As shown by the abnormally high MF levels in farnesol treated glands, epoxidation seems to be a rate-limiting step under certain experimental conditions.  相似文献   

12.
The biodegradation of iron-citrate complexes depends on the structure of the complex formed between the metal and citric acid. Ferric iron formed a bidentate complex with citric acid, [Fe(III) (OH)2 cit]2- involving two carboxylic acid groups, and was degraded at the rate of 86 μM h-1. In contrast, ferrous iron formed a tridentate complex with citric acid, [Fe(II) cit]-, involving two carboxylic acid groups and the hydroxyl group, and was resistant to biodegradation. However, oxidation and hydrolysis of the ferrous iron resulted in the formation of a tridentate ferric-citrate complex, [Fe(III)OH cit]-, which was further hydrolyzed to a bidentate complex, [Fe(III)(OH)2 cit]2-, that was readily degraded. The rate of degradation of the ferrous-citrate complex depended on the rate of its conversion to the more hydrolyzed form of the ferric-citrate complex. Bacteria accelerated the conversion much more than did chemical oxidation and hydrolysis.  相似文献   

13.
Pathways of Propionate Degradation by Enriched Methanogenic Cultures   总被引:11,自引:10,他引:1       下载免费PDF全文
A mixed methanogenic culture was highly enriched in a growth medium containing propionate as the sole organic carbon and energy source. With this culture, the pathways of propionate degradation were studied by use of 14C-radiotracers. Propionate was first metabolized to acetate, carbon dioxide, and hydrogen by nonmethanogenic organisms. Formate was not excreted. The carbon dioxide originated exclusively from the carboxyl group of propionate, whereas both [2-14C]- and [3-14C]propionate lead to the production of radioactive acetate. The methyl and carboxyl groups of the acetate produced were equally labeled, regardless of whether [2-14C]- or [3-14C]propionate was used. These observations suggest that in the culture, propionate was degraded through a randomizing pathway.  相似文献   

14.
The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [13C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and 13C-labeling of CH4 verified that supplemental [13C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae.  相似文献   

15.
Tolbutamide partially inhibited the growth but increased the glycogen content of Tetrahymena pyriformis in logarithmically growing cultures. Tolbutamide slightly increased 14CO2 production from [1-14C] and [6-14HC] glucose and [2-14C] pyruvate, but had little effect on the oxidation of [1-14C] acetate when any of these substrates were added to the proteose-peptone medium in which the cells had been grown. Measurement of 14CO2 production from [1-14C] and [2-I4C]-glyoxylate showed that this substrate was primarily oxidized via the glyoxylate cycle, with little if any oxidation occurring via the peroxisomal glyoxylate oxidase. Addition of tolbutamide inhibited the glyoxylate cycle as indicated by a marked reduction in label appearing in CO2 and in glycogen from labeled acetate. In control cells, addition of acetate strongly inhibited the oxidation of [2-14C]-pyruvate whereas addition of pyruvate had little effect on the oxidation of [1-14C]-acetate. Acetate was more effective than pyruvate in preventing the growth inhibitory and glycogen-increasing effects of tolbutamide. The data suggest that one effect of tolbutamide may be to interfere with the transfer of isocitrate and acetyl CoA across mitochondrial membranes.  相似文献   

16.
Growing evidence indicates that some metabolites derived from the kynurenine pathway, the major route of l-tryptophan catabolism, are involved in the neurotoxicity associated with several brain disorders, such as Huntington’s disease, Parkinson’s disease and Alzheimer’s disease, as well as in glutaryl-CoA dehydrogenase deficiency (GAI). Considering that the pathophysiology of the brain damage in these neurodegenerative disorders is not completely defined, in the present study, we investigated the in vitro effect of l-kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HA) and anthranilic acid (AA) on some parameters of energy metabolism, namely glucose uptake, 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate, as well as on the activities of the respiratory chain complexes I–IV and Na+,K+-ATPase activity in cerebral cortex from 30-day-old rats. We observed that all compounds tested, except l-kynurenine, significantly increased glucose uptake and inhibited 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate. In addition, the activities of complexes I, II and IV of the respiratory chain were significantly inhibited by 3HK, while 3HA inhibited complexes I and II activities and AA inhibited complexes I–III activities. Moreover, Na+,K+-ATPase activity was not modified by these kynurenines. Taken together, our present data provide evidence that various kynurenine intermediates provoke impairment of brain energy metabolism.  相似文献   

17.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-14C]acetate to 14CO2 when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H2) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H2 levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H2 levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H2 as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO2 plus H2, driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   

18.
The metabolism of melondialdehyde (MDA) by male and female Swiss mice was investigated. Distribution of an i.p. dose of MDA is rapid and uniform throughout the body. Conversion of 14C-labeled MDA to CO2 is complete 4 hours after an i.p. dose of 5 μmol to 200 μmol with no signs of short term toxicity. The yields of CO2 from [1-14C]-β-alanine, [3-14C]-β-alanine, [1-14C]-sodium acetate, and [2-14C]-sodium acetate were also determined. Comparison of the yields of CO2 from this series of compounds suggests the intermediacy of malonic semialdehyde in the metabolism of MDA. High doses (600 μmol) of β-alanine or acetate given prior to 14C-MDA reduced the yield of 14CO2. Ethanol and disulfiram were both inhibitors of MDA metabolism, indicating the involvement of aldehyde dehydrogenase in the oxidation of MDA.These data demonstrate the ability of animal tissues to rapidly remove exogeneously administered MDA. They also have implications with respect to the possible pathological consequences of MDA generation.  相似文献   

19.
The potential for microscale bacterial Fe redox cycling was investigated in microcosms containing ferrihydrite-coated sand and a coculture of a lithotrophic Fe(II)-oxidizing bacterium (strain TW2) and a dissimilatory Fe(III)-reducing bacterium (Shewanella alga strain BrY). The Fe(II)-oxidizing organism was isolated from freshwater wetland surface sediments which are characterized by steep gradients of dissolved O2 and high concentrations of dissolved and solid-phase Fe(II) within mm of the sediment–water interface, and which support comparable numbers (105–106 mL−1) of culturable Fe(II)-oxidizing and Fe(III)-reducing reducing. The coculture systems showed minimal Fe(III) oxide accumulation at the sand-water interface, despite intensive O2 input from the atmosphere and measurable dissolved O2 to a depth of 2 mm below the sand–water interface. In contrast, a distinct layer of oxide precipitates formed in systems containing Fe(III)-reducing bacteria alone. Examination of materials from the cocultures by fluorescence in situ hybridization indicated close physical juxtapositioning of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the upper few mm of sand. Our results indicate that Fe(II)-oxidizing bacteria have the potential to enhance the coupling of Fe(II) oxidation and Fe(III) reduction at redox interfaces, thereby promoting rapid microscale cycling of Fe. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The effects of treatment with the osteotropic steroids 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 17β-estradiol, or dexamethasone on [1-14C]arachidonic acid (AA) uptake and distribution into glycerophospholipid classes by normal adult human osteoblast-like (hOB) cells were investigated. Total uptake of [1-14C]AA was decreased in cells treated with dexamethasone when assayed after a 24-, 48-, or 96-h exposure to the hormone. Specific radiolabel incorporation into phosphatidylcholine was reduced by a 48-h treatment with dexamethasone with a concurrent increase in the radiolabeling of phosphatidylethanolamine. However, these changes were transient, and by 96 h of dexamethasone treatment the distribution of the radiolabeled fatty acid had reequilibrated to resemble the pattern found for vehicle treated samples. Total uptake of [1-14C]AA was diminished by 96-h treatment with 1,25(OH)2D3 (79 ± 3% of control, P < 0.01); at that time point, a significant decrease in the proportional radiolabeling of the phosphatidylinositol pool was identified (92 ± 2% of control, P < 0.05). The 1,25(OH)2D3-dependent decrease in total uptake and in phosphatidylinositol incorporation of [1-14C]AA were found to be hormone dose dependent. Treatment with 24,25(OH)2D3 was without effect on either total [1-14C]AA uptake or the specific [1-14C]AA radiolabeling of the phosphatidylinositol pool. 1,25(OH)2D3 treatment decreased hOB cell uptake of [1-14C]oleic acid and decreased its proportional incorporation into the phosphatidylinositol pool. Gas chromatographic analyses revealed no 1,25(OH)2D3-dependent effects on total phosphatidylinositol lipid mass or on the mole percent of arachidonic acid within the phosphatidylinositol pool, leaving the mechanism of the effects of the secosteroid on hOB cell AA metabolism unexplained. 17β-Estradiol had no effects on the parameters of AA metabolism measured. As a consequence of their modulation of arachidonic acid uptake and its distribution into hOB cellular phospholipids, steroids might alter the biological effects of other hormones whose actions include the stimulated production of bioactive AA metabolites, such as prostaglandins or the various lipoxygenase products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号