首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differentiation of myeloid cells is associated with the gradual acquisition of functional capacity to produce a respiratory burst. In our study HL-60 cells were differentiated to the monocyte phenotype with IFN-gamma or 1,25-dihydroxyvitamin D3, or to the neutrophil phenotype with retinoic acid or DMSO to compare the time-course of expression of membrane and cytosolic oxidase components, and to correlate this with the appearance of a functional oxidase. Over a 6-day period of induction the rank order of the ability of these agents to induce expression of PMA-stimulated superoxide production was: IFN-gamma greater than 1,25(OH)2D3 greater than retinoic acid greater than DMSO. Immunoblot analysis of HL-60 membranes and cytosol was used to assess the amount of specific phagocyte oxidase factors (91 and 22 kDa subunits of membrane cytochrome b558 (gp91 and p22), and 47 and 67 kDa cytosol oxidase factors (p47 and p67)). HL-60 cell membranes or cytosol were tested in a cell-free assay of superoxide production by mixing with normal neutrophil cytosol or membranes, respectively. p47 was first detected at 16 h of differentiation, increasing similarly thereafter with all induction regimens and reaching a maximum by 3 to 4 days. The earliest detection of p67 varied from 2 to 6 days depending on the inducing agent and appeared to be the limiting cytosol component. Small amounts of both subunits of cytochrome b558 were detected in uninduced HL-60 membranes, but were sufficient to support substantial superoxide production when combined with normal neutrophil cytosol. Both cytochrome b558 subunit proteins and membrane oxidase activity increased during differentiation in parallel. We conclude that membrane and cytosol components of the NADPH oxidase complex appear at different times and increase differently during HL-60 differentiation. The production of p67 is the major factor limiting the respiratory burst during HL-60 differentiation.  相似文献   

2.
Diphenylene iodonium (Ph2I), a lipophilic reagent, is an efficient inhibitor of the production of O2- by the activated NADPH oxidase of bovine neutrophils. In a cell-free system of NADPH oxidase activation consisting of neutrophil membranes and cytosol from resting cells, supplemented with guanosine 5'-[gamma-thio]triphosphate, MgCl2 and arachidonic acid, or in membranes isolated from neutrophils activated by 4 beta-phorbol 12-myristate 13-acetate, addition of a reducing agent, e.g. NADPH or sodium dithionite, markedly enhanced inhibition of the NADPH oxidase by Ph2I. The membrane fraction was found to contain the Ph2I-sensitive component(s). In the presence of a concentration of Ph2I sufficient to fully inhibit O2- production (around 10 nmol/mg membrane protein), addition of catalytic amounts of the redox mediator dichloroindophenol (Cl2Ind) resulted in a by-pass of the electron flow to cytochrome c, the rate of which was about half of that determined in non-inhibited oxidase. A marked increase in the efficiency of this by-pass was achieved by addition of sodium deoxycholate. The Cl2-Ind-mediated cytochrome c reduction was negligible in membranes isolated from resting neutrophils. At a higher concentration of Ph2I (100 nmol/mg membrane protein), the Cl2Ind-mediated cytochrome c reductase activity was only half inhibited, which indicated that, in the NADPH oxidase complex, there are at least two Ph2I sensitive components, differing by their sensitivity to the inhibitor. At low concentrations of Ph2I (less than 10 nmol/mg protein), the spectrum of reduced cytochrome b558 in isolated neutrophil membranes was modified, suggesting that the component sensitive to low concentrations of Ph2I is the heme binding component of cytochrome b558. Higher concentrations of Ph2I were found to inhibit the isolated NADPH dehydrogenase component of the oxidase complex. A number of membrane and cytosolic proteins were labeled by [125I]Ph2I. However, the radiolabeling of a membrane-bound 24-kDa protein, which might be the small subunit of cytochrome b558, responded more specifically to the conditions of activation and reduction which are required for inhibition of O2- production by Ph2I. The O2(-)-generating form of xanthine oxidase was also inhibited by Ph2I. Inhibition of xanthine oxidase, a non-heme iron flavoprotein, by Ph2I had a number of features in common with that of the neutrophil NADPH oxidase, namely the requirement of reducing conditions for inhibition of O2- production by Ph2I and the induction of a by-pass of electron flow to cytochrome c by Cl2Ind in the inhibited enzyme, suggesting some similarity in the molecular organization of the two enzymes.  相似文献   

3.
Cytochrome b558 of pig blood neutrophils was purified from the membranes of resting cells to examine its ability to reconstitute superoxide (O2-)-forming NADPH oxidase activity in a cell-free assay system containing cytosol and fatty acid. The membrane-associated cytochrome b558 was solubilized with a detergent, n-heptyl beta-thioglucoside, and purified by DEAE-Sepharose, heparin-Sepharose, and Mono Q column chromatography. The final preparation of cytochrome containing 11.5 nmol of protoheme/mg of protein gave bands of the large and small subunits on immunoblotted gel. The cell-free system with the purified cytochrome alone as a membrane component showed little O2(-)-generating activity in the absence of exogenous FAD. However, the system showed high O2(-)-generating activity of 31.8 mol/s/mol of cytochrome b558 (52.5% of the original O2(-)-generating activity of the solubilized membranes) in the presence of a nitro blue tetrazolium (NBT) reductase fraction that was separated from the cytochrome b fraction by heparin-Sepharose chromatography. Heat treatment of the NBT reductase fraction resulted in loss of the O2(-)-generating activity in the reconstituted system. The O2(-)-forming activity of the reconstituted system was markedly decreased by removal of FAD from the NBT reductase fraction and was restored by readdition of FAD to the FAD-depleted reductase. The reconstituted system containing purified cytochrome b558 plus the NBT reductase showed approximately 100 times higher O2(-)-generating activity than a system containing rabbit liver NADPH-cytochrome P-450 reductase instead. These results suggest that both the FAD-dependent NBT reductase and cytochrome b558 are required as membrane redox components for O2(-)-forming NADPH oxidase activity. The present data are discussed in comparison with previously reported results on reconstituted systems containing added free FAD.  相似文献   

4.
We reported previously that diacylglycerol (diC8) and GTP gamma S synergize with an anionic amphiphile such as sodium dodecyl sulfate (SDS) to produce high rates of superoxide generation in a cell-free system consisting of neutrophil plasma membrane plus cytosol [Burnham, D. N., Uhlinger, D. J., & Lambeth, J. D. (1990) J. Biol. Chem. 265, 17550-17559]. Here we investigate the effects of these activating factors on the plasma membrane association in an in vitro translated radiolabeled recombinant p47-phox protein. Apparent translocation, assayed by cosedimentation with plasma membranes, required the presence of excess cytosol and an anionic amphiphile, was enhanced by both GTP gamma S and diC8, and was inhibited by high salt, correlating qualitatively with activation; up to 70% cosedimentation was observed with the combination of activators (compared with less than 20% in their absence). Similar results were obtained using heat-inactivated cytosol, wherein another oxidase component, p67-phox, has been inactivated. Unexpectedly, from 50 to 80% of the apparent translocation occurred in the absence of membranes, indicating that protein aggregation accounted for a significant part of the observed translocation. Nevertheless, the percent translocation was increased in all cases by the presence of membranes, indicating some degree of protein-membrane interaction. While a control in vitro translated protein failed to translocate, cosedimentation of p47-phox occurred equally well when red blood cell or neutrophil plasma membranes lacking cytochrome b558 were used. Also, the peptide RGVHFIF, which is contained within the C-terminus of the large subunit of cytochrome b558, failed to inhibit translocation/aggregation of p47-phox, despite its ability to inhibit cell-free activation of the oxidase. The data are consistent with the following: (a) SDS, diC8, and GTP gamma S all act on cytosolic components to alter protein-protein and/or protein-membrane associations, and these changes are necessary (but not sufficient) for activation; (b) these altered associations are likely to function by increasing the local concentration of p47-phox and other components at the plasma membrane; (c) a high background of nonspecific associations in the cell-free activation system is likely to obscure any specific, functionally relevant associations (e.g., with cytochrome b558); and (d) the mechanism of translocation in the cell-free system differs from that seen in intact neutrophils.  相似文献   

5.
The redox core of the neutrophil NADPH oxidase complex is a membrane-bound flavocytochrome b in which FAD and heme b are the two prosthetic redox groups. Both FAD and heme b are able to react with diphenylene iodonium (DPI) and iodonium biphenyl (IBP), two inhibitors of NADPH oxidase activity. In this study, we show that the iodonium modification of heme b contributes predominantly to the inhibition of NADPH oxidase. This conclusion is based on the finding that both iodonium compounds decreased the absorbance of the Soret peak of flavocytochrome b in neutrophil membranes incubated with NADPH, and that this decrease was strictly correlated with the loss of oxidase activity. Furthermore, the heme component of purified flavocytochrome b reduced to no more than 95% by a limited amount of sodium dithionite could be oxidized by DPI or IBP. Butylisocyanide which binds to heme iron precludes heme b oxidation. In activated neutrophil membranes, competitive inhibition of O2 uptake by DPI or IBP occurred transiently and was followed by a noncompetitive inhibition. These results, together with those of EPR spectroscopy experiments, lead us to postulate that DPI or IBP first captures an electron from the reduced heme iron of flavocytochrome b to generate a free radical. Then, the binding of this radical to the proximate environment of the heme iron, most probably on the porphyrin ring, results in inhibition of oxidase activity. In the presence of an excess of sodium dithionite, DPI and IBP produced a biphasic decrease of the Soret band of flavocytochrome b, with a break in the dose effect curve occurring at 50% of the absorbance loss. This was consistent with the presence of two hemes in flavocytochrome b that differ by their sensitivity to DPI or IBP.  相似文献   

6.
Sodium dodecyl sulfate (SDS) treatment of a mixture of cytosol and plasma membranes from resting neutrophils resulted in the activation of the respiratory burst oxidase, a complicated enzyme that catalyzes the production of O2- from NADPH and oxygen. Activation was accompanied by translocation to the plasma membranes of the oxidase components p47phox and p67phox, which in resting cytosol were found in a M(r) approximately 240,000 complex. This translocation, which appeared to take place without a major change in the size of the cytosolic complex, did not occur if the membranes lacked cytochrome b558, and was inhibited by the peptide PRGV-HFIFNK, a sequence found near the carboxyl terminus of cytochrome b558 that was known from earlier work to inhibit O2- production by the cell-free system (Rotrosen, D., Kleinberg, M. E., Nunoi, H., Leto T., Gallin, J. I., and Malech H. L. (1990) J. Biol. Chem. 265, 8745-8750). Cytosols pretreated with the cross-linking agents 3,3'-dithiobis(sulfosuccinimidyl) propionate (DTSSP) (cleavable by 2-mercaptoethanol) and bis-(sulfosuccinimidyl) suberate (not cleavable by 2-mercaptoethanol) lost most of their ability to support O2- production in the cell-free system, and oxidase components from DTSSP-treated cytosol failed to translocate to the plasma membrane. When DTSSP-treated cytosols were incubated with 2-mercaptoethanol, however, both O2- production and translocation were partly restored, indicating that the functional impairment in DTSSP-treated cytosols was probably due at least in part to a restriction in the conformational mobility of the cross-linked peptide chains in the approximately 240,000 complex. These findings provide further support for the idea that the cytosolic components of the respiratory burst oxidase exist in the form of a approximately 240,000 complex, and suggest that the exposure of this complex to SDS induces a structural change that may or may not be associated with the loss of an inhibitory subunit too small to cause a detectable change in the size of the complex. This SDS-induced change allows translocation to take place by creating a membrane-binding site on the surface of the complex.  相似文献   

7.
It is known that in respiratory burst oxidase preparations engaged in O2- production, cytochrome b558, a characteristic oxidase component, is partly reduced. This result has been interpreted in terms of a mechanism in which cytochrome b558 functions as an electron-carrying component of the respiratory burst oxidase, its level of reduction reflecting a steady-state partitioning of the cytochrome between reduced and oxidized forms as it ferries electrons from NADPH to oxygen. Kinetic arguments based on this interpretation have supported the proposal that the cytochrome is reduced at a rate sufficient to account for the rate of O2- production by activated neutrophils. We have confirmed the partial reduction of cytochrome b558 in neutrophil cytoplasts and in oxidase preparations exposed to NADPH, but have found that the reduction of the cytochrome bears no apparent relation to the activity of the oxidase, and can occur when NADPH is added to neutrophil membrane preparations that are unable to manufacture O2-. We therefore conclude that the NADPH-dependent reduction of cytochrome b558 seen in these preparations is unlikely to be a reflection of a catalysis-related steady state and that inferences drawn from such observations regarding the kinetic competence of the cytochrome may need to be reconsidered.  相似文献   

8.
Activation of the phagocytic cell superoxide-generating NADPH oxidase requires interaction of cytosolic and membrane-associated components. With most stimuli activation of the oxidase is accompanied by multisite phosphorylation of the 47-kDa cytosolic oxidase factor (p47) which translocates from cytosol to membranes. Native p47 is a highly basic protein that undergoes stepwise charge shifts with successive phosphorylation events. Phosphorylation of p47 was studied by immunoprecipitation from neutrophil cytosol and membrane fractions followed by two-dimensional gel electrophoresis and autoradiography. In the resting cell p47 was not phosphorylated. In the cytosol of phorbol myristate acetate-activated neutrophils eight distinct p47 phosphoproteins were present. The membrane fraction from these activated cells contained a family of p47 phosphoproteins of electrophoretic mobilities identical to those seen in cytosol plus an additional, more acidic p47 phosphoprotein not present in cytosol. Very early after activation (30 s) only the four most acidic p47 phosphoproteins were present in the membrane fraction. Only at later times (5-15 min) was the full spectrum of p47 phosphoproteins present in the membrane fraction. In contrast, the full spectrum of p47 phosphoproteins was present in the cytosol over the entire time course we studied. In neutrophils from patients with cytochrome b558-deficient chronic granulomatous disease p47 phosphorylation was incomplete and p47 translocation to membrane did not occur. These studies demonstrated that the cytochrome was essential for formation of the three most acidic p47 phosphoproteins and greatly augmented formation of the fourth most acidic p47 phosphoprotein found in normal neutrophils. The temporal correlation between specific p47 phosphorylation events and p47 translocation to membrane is consistent with a model of oxidase activation in which a series of p47 phosphorylation events which occurs in cytosol precedes and may be required for p47 interaction with membrane.  相似文献   

9.
The resonance Raman spectra of neutrophil cytochrome b558 obtained upon Soret excitation indicate that the heme is low spin six-coordinate in both ferric and ferrous oxidation states; comparison with the spectra of bis-imidazole hemin suggests imidazole or imidazolate axial ligation. Minor bands attributable to vibrational motions of ring-conjugated vinyl substituents were also observed, consistent with a heme assignment of protoporphyrin IX. The spectra of deoxycholate-solubilized cytochrome b558 were indistinguishable from neutrophil plasma membranes or specific granules, as were spectra from unstimulated and phorbol myristate acetate-stimulated cells, indicating that the hemes are structurally identical in various subcellular environments and cellular physiological states. However, structural complexity was suggested by biphasic ferric-ferrous photoreduction under 413-nm illumination and the absence of an EPR spectrum for the ferric heme under conditions where simple bis-imidazole heme-containing cytochromes are expected to give detectable signals. Midpoint reduction potentials and resonance Raman spectra of the soluble cytochrome b558 from an individual with cytochrome b558 positive (type IA.2) chronic granulomatous disease were nearly identical to normal oxidase, with the exception that the deficient oxidase did not undergo heme photoreduction. Possible structural models are discussed in relation to other physical properties (ligand binding, thermodynamic potentials) exhibited by the cytochrome.  相似文献   

10.
Phagocytic leukocytes contain an activatable NADPH:O2 oxidoreductase. Components of this enzyme system include cytochrome b558, and three soluble oxidase components (SOC I, SOC II, and SOC III) found in the cytosol of resting cells. Previously, we found that SOC II copurifies with, and is probably identical to, a 47-kDa substrate of protein kinase C. In the present study we investigated the change in location of several of these oxidase components after activation of intact neutrophils with phorbol myristate acetate (PMA) and separation of subcellular fraction on sucrose density gradients. On Western blots with fractions of resting cells, the alpha subunit of cytochrome b558 was detected with a monoclonal antibody as a doublet of Mr 22,000 and 24,000 in the specific granules and as a single band of Mr 24,000 in the plasma membrane. PMA induced an increase of cytochrome b558 in the plasma membrane, including the Mr 22,000 band. PMA also induced translocation of the 47-kDa protein from the cytosol to the membrane fraction, as revealed by in vitro phosphorylation experiments. When NADPH oxidase activity was determined in a cell-free system in the presence of sodium dodecyl sulfate and GTP with plasma membranes from resting cells, cytosol from PMA-treated cells was deficient compared with cytosol from resting cells. This deficiency could be partially restored by the addition of SOC I. Concomitantly, SOC I activity appeared in the plasma membranes of PMA-treated cells. These studies support the hypothesis that PMA stimulation of neutrophils results in assembly of oxidase components from the cytosol and the specific granules in the plasma membrane with subsequent expression of NADPH oxidase activity.  相似文献   

11.
Chronic granulomatous disease (CGD) is due to a functional defect of the O2- generating NADPH oxidase of phagocytes. Epstein-Barr-virus-immortalized B lymphocytes express all the constituents of oxidase with activity 100 times less than that of neutrophils. As in neutrophils, oxidase activity of Epstein-Barr-virus-immortalized B lymphocytes was shown to be defective in the different forms of CGD; these cells were used as a model for the complementation studies of two p67-phox-deficient CGD patients. Reconstitution of oxidase activity was performed in vitro by using a heterologous cell-free assay consisting of membrane-suspended or solubilized and purified cytochrome b558 that was associated with cytosol or with the isolated cytosolic-activating factors (p67-phox, p47-phox, p40-phox) from healthy or CGD patients. In p67-phox-deficient CGD patients, two cytosolic factors are deficient or missing: p67-phox and p40-phox. Not more than 20% of oxidase activity was recovered by complementing the cytosol of p67-phox-deficient patients with recombinant p67-phox. On the contrary, a complete restoration of oxidase activity was observed when, instead of cytosol, the cytosolic factors were added in the cell-free assay after isolation in combination with cytochrome b558 purified from neutrophil membrane. Moreover, the simultaneous addition of recombinant p67-phox and recombinant p40-phox reversed the previous complementation in a p40-phox dose-dependent process. These results suggest that in the reconstitution of oxidase activity, p67-phox is the limiting factor; the efficiency of complementation depends on the membrane tissue and the cytosolic environment. In vitro, the transition from the resting to the activated state of oxidase, which results from assembling, requires the dissociation of p40-phox from p67-phox for efficient oxidase activity. In the process, p40-phox could function as a negative regulatory factor and stabilize the resting state.  相似文献   

12.
Epstein-Barr-virus-transformed human B lymphocytes (EBV B lymphocytes) stimulated by 4 beta-phorbol 12-myristate 13-acetate exhibit an NADPH-dependent oxidase activity capable of generating the superoxide anion O2-, similar to, but less efficient than that of activated neutrophils. A cell-free system of oxidase activation consisting of a membrane fraction and cytosol from EBV B lymphocyte homogenate supplemented with guanosine 5'-[gamma-thio]triphosphate (GTP[S]), arachidonic acid and Mg2+ was found to be competent in the production of O2-, assessed by the superoxide-dismutase-sensitive reduction of cytochrome c in the presence of NADPH. However, cytochrome c reduction was slow and largely insensitive both to superoxide dismutase, and to iodonium biphenyl, a powerful inhibitor of the oxidase activity in neutrophils. A markedly faster reduction of cytochrome c in the presence of NADPH was obtained with a heterologous system consisting of cytosol from EBV B lymphocytes and bovine neutrophil membranes, GTP[S], arachidonic acid and Mg2+; in this system, reduction of cytochrome c was totally inhibited by superoxide dismutase and iodonium biphenyl. These results show that EBV B lymphocytes contain a substantial amount of cytosolic factors of oxidase activation, and that the limiting factors for O2- production in B lymphocytes are the membrane components of the oxidase complex. The heterologous system of EBV B lymphocyte cytosol and bovine neutrophil membranes provided a rapid and convenient method to diagnose cytosolic defects in autosomal forms of chronic granulomatous disease. In addition, it might be a useful tool to explore the mechanism of action of the cytosolic factors in oxidase activation.  相似文献   

13.
A flavin-linked NADPH cytochrome c oxido-reductase of molecular mass 77-kDa was extracted from membranes of rabbit peritoneal neutrophils and purified in the presence of Triton X-100. The redox properties of this enzyme were examined. By some criteria including its high sensitivity to mersalyl, and its relatively high specificity for NADPH compared to NADH, the rabbit neutrophil NADPH cytochrome c reductase resembled NADPH-cytochrome P-450 reductase. Limited proteolysis generated water soluble fragments, with molecular masses of 67-kDa and 57-kDa, which were still endowed with a substantial reductase activity. When added to a lysate of neutrophil membranes in octylglucoside, in the presence of an oxidase activation medium consisting of rabbit neutrophil cytosol, GTP-gamma-S, arachidonic acid and Mg2+, the purified reductase enhanced the production of O2-., suggesting that it forms part of the O2-. generating oxidase.  相似文献   

14.
Cytochrome b(558) is the catalytic core of the phagocyte NADPH oxidase that mediates the production of bactericidal reactive oxygen species. Cytochrome b(558) is formed by two subunits gp91-phox and p22-phox (1/1), non-covalently associated. Its activation depends on the interaction with cytosolic regulatory proteins (p67-phox, p47-phox, p40-phox and Rac) leading to an electron transfer from NADPH to molecular oxygen and to the release of superoxide anions. Several studies have suggested that the activation process was linked to a change in cytochrome b(558) conformation. Recently, we confirmed this hypothesis by isolating cytochrome b(558) in a constitutively active form. To characterize active and inactive cytochrome b(558) conformations, we produced four novel monoclonal antibodies (7A2, 13B6, 15B12 and 8G11) raised against a mixture of cytochrome b(558) purified from both resting and stimulated neutrophils. The four antibodies labeled gp91-phox and bound to both native and denatured cytochrome b(558). Interestingly, they were specific of extracellular domains of the protein. Phage display mapping combined to the study of recombinant gp91-phox truncated forms allowed the identification of epitope regions. These antibodies were then employed to investigate the NADPH oxidase activation process. In particular, they were shown to inhibit almost completely the NADPH oxidase activity reconstituted in vitro with membrane and cytosol. Moreover, flow cytometry analysis and confocal microscopy performed on stimulated neutrophils pointed out the capacity of the monoclonal antibody 13B6 to bind preferentially to the active form of cytochrome b(558). All these data suggested that the four novel antibodies are potentially powerful tools to detect the expression of cytochrome b(558) in intact cells and to analyze its membrane topology. Moreover, the antibody 13B6 may be conformationally sensitive and used as a probe for identifying the active NADPH oxidase complex in vivo.  相似文献   

15.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of Km and Vmax for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, Km values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophil oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.  相似文献   

16.
Superoxide (.O2-) production by the NADPH oxidase of a membrane fraction derived from rabbit peritoneal neutrophils activated by 4 beta-phorbol 12-myristate 13-acetate (PMA) was studied at 25 degrees C under different conditions, and measured by the superoxide dismutase inhibitable reduction of cytochrome c. Whereas PMA-activated rabbit neutrophils incubated in a glucose-supplemented medium exhibited a substantial rate of production of .O2-, the membranes prepared by sonication of the activated neutrophils were virtually unable to generate .O2- in the presence of NADPH. Instead, they exhibited an NADPH-dependent diaphorase activity, measured by the superoxide-dismutase-insensitive reduction of cytochrome c. Upon addition of arachidonic acid, which is known to elicit oxidase activation, the NADPH diaphorase activity of the rabbit neutrophil membranes vanished and was stoichiometrically replaced by an NADPH oxidase activity. The emerging oxidase activity was fully sensitive to iodonium biphenyl, a potent inhibitor of the respiratory burst, whereas the diaphorase activity was not affected. Addition of 0.1% Triton X-100 or an excess of arachidonic acid, acting as detergent, resulted in the reappearance of the diaphorase activity at the expense of the oxidase activity. These results indicate that the diaphorase-oxidase transition is reversible. When the rabbit neutrophil membranes were supplemented with rabbit neutrophil cytosol, guanosine 5'-[gamma-thio]triphosphate and Mg2+, in addition to arachidonic acid, not only the NADPH diaphorase activity disappeared, but the emerging NADPH oxidase activity was markedly enhanced (about 10 times compared to that of membranes treated with arachidonic acid alone). The diaphorase-oxidase transition was accompanied by a 10-fold increase in the Km for NADPH, suggesting a change of conformation propagated to the NADPH-binding site during the transition. The treatment of PMA-activated rabbit neutrophils with cross-linking reagents, like glutaraldehyde or 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide, prevented the loss of the PMA-elicited oxidase activity upon disruption of the cells by sonication, suggesting that the interactions between the components of the oxidase complex are stabilized by cross-linking.  相似文献   

17.
Phosphatidic acid (PA), a molecule that is rapidly produced by the stimulated turnover of phospholipids in a variety of cells including blood neutrophils, elicited NADPH-dependent superoxide anion (O2-) production in detergent extracts from membranes of resting pig neutrophils. The stimulatory effect of PA was independent of cytosolic factors, differing from arachidonic acid and sodium dodecyl sulfate which, on the contrary, absolutely required the presence of cytosol to elicit the same result. The O2(-)-forming activity of the detergent extract activable by PA, as that by sodium dodecyl sulfate and arachidonic acid plus cytosol, was found in the chromatographic fractions containing cytochrome b558 and presented a chromatographic profile identical to that of the activated NADPH oxidase, which was obtained from neutrophils prestimulated with phorbol 12-myristate 13-acetate. The PA-induced NADPH-dependent O2(-)-forming activity showed kinetic properties and sensitivity to the inhibitors similar to the classical ones of the activated neutrophil NADPH oxidase. The data suggest that, in this cell-free system, PA may stimulate O2- formation by direct interaction with latent NADPH oxidase of neutrophils or with some of its regulatory components.  相似文献   

18.
A 47 kDa phosphoprotein is involved in the respiratory-burst oxidase of phagocytic cells. After stimulation of neutrophils with phorbol myristate acetate, this phosphoprotein was identified in both the cytosol and membranes. Peptide mapping of the two forms resulted in identical patterns of phosphopeptides. Dose-response curves for accumulation of phosphoprotein in the two sites were very similar, whereas the detection of the phosphoprotein in the cytosol preceded that in the membranes. The membrane-associated 47 kDa phosphoprotein was absent from the neutrophils of patients with X-chromosome-linked chronic granulomatous disease, which lack cytochrome b-245, and intermediate levels were detected in the membranes of their heterozygote carrier mothers. Activation of the neutrophil oxidase system appears to be dependent upon phosphorylation of the cytosolic 47 kDa protein and its association with cytochrome b-245 in the membranes. It is probably the cytosolic factor required for reconstitution of the active oxidase in cell-free systems.  相似文献   

19.
A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present.  相似文献   

20.
Human normal and transformed (Caco-2) colon tissues as well as guinea pig gastric mucosal cells express Nox1, which is a homolog of the phagocyte NADPH oxidase subunit, gp91(phox) of membrane-bound cytochrome b(558). It was reported that Nox1-transfection to NIH 3T3 cells could provide O(2)(-)-generating ability, independently of regulatory cytosolic factors (Rac2, p67(phox), and p47(phox)) that are obligatory in the phagocyte oxidase system. Here, we detected and sequenced a p67(phox) homolog in Caco-2 almost identical to the neutrophil sequence, except for three nucleotide substitutions, two of which changed lysines 181 and 328 to arginines. Investigation of its ability to support O(2)(-)-generation in cell-free reconstitution experiments combining with neutrophil cytochrome b(558) showed O(2)(-)-generation, provided that recombinant p47(phox) was added. This result demonstrates that the intrinsic p67(phox) homolog of Caco-2 was able to function as a phagocyte p67(phox) for cytochrome b(558). The requirement of p47(phox) addition suggested that this component was absent in Caco-2 cells. Caco-2 membranes, used as a source of Nox1 in place of cytochrome b(558), did not show significant O(2)(-)-generation, which was mainly explained by their very little Nox1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号