首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Genetically similar H5N1 viruses circulating in the avian reservoir exhibit different levels of pathogenicity in mice. In this study, we characterized two highly pathogenic H5N1 avian isolates—A/Hunan/316/2005 (HN05), which is highly pathogenic in mice, and A/Hubei/489/2004 (HB04), which is nonpathogenic. In mammalian cells, HN05 replicates more efficiently than HB04, although both viruses have similar growth kinetics in avian cells. We used reverse genetics to generate recombinant H5N1 strains containing genes from HN05 and HB04 and examined their virulence. HN05 genes encoding the polymerase complex determine pathogenicity and viral replication ability both in vitro and in vivo. The PB2 subunit plays an important role in enhancing viral replication, and the PB1 and PA subunits contribute mainly to pathogenicity in mice. These results can be used to elucidate host-range expansion and the molecular basis of the high virulence of H5N1 viruses in mammalian species.  相似文献   

2.
Viral pathogenicity may be regulated by host defense mechanisms at the virus-immune cell interaction level. The immune system plays an important role in the outcome of acute disease induced by the mouse hepatitis virus type 3 (MHV3) virus. The lymphoid cells act as effectors in the virus elimination as well as targets for viral replication. In order to demonstrate a correlation between MHV3 pathogenicity and viral replication in lymphocytes, genetically-determined resistant A/J and susceptible C57BL/6 mice were infected with pathogenic (L2-MHV3) or nonpathogenic (YAC-MHV3) viral strains. Pathogenicity and histopathologic studies have revealed that lymphoid organs such as thymus and spleen, showed injuries or atrophy in susceptible mice infected with L2-MHV3. No histopathologic lesions in the lymphoid organs occurred in C57BL/6 mice infected with YAC-MHV3 or A/J mice infected with both viruses. The mechanisms involved in the lymphoid injuries were studied regarding viral replication in the lymphoid organs and cells in infected mice. Results indicate that cell depletion in lymphoid organs is caused by a complete viral replication in lymphoid cells. Thy1.2+ and surface IgM+ lymphoid cells from susceptible C57BL/6 mice infected with L2-MHV3 were permissive to viral replication and to subsequent cell lysis. No cell lysis, however, occurred in lymphoid cells from C57BL/6 mice infected with YAC-MHV3 and A/J mice infected with both virus strains. In vitro studies, with purified T and B cell populations were performed to determine the mechanism effecting susceptibility or resistance to viral-induced cell lysis occurring in such cells. A blockade, probably occurring at the viral RNA polymerase activity level, prevents viral replication in resistant cells between the stages of fixation of the virus at the cell-surface receptor and the viral protein translation. These experiments indicate that an intrinsic virus-specific resistant mechanism occurs in lymphoid cells that plays a major role in the viral pathogenicity.  相似文献   

3.
We studied the pathogenicity of five different genotypes (A to E) of highly pathogenic avian H5N1 viruses, which contained HA genes similar to those of the H5N1 virus A/goose/Guangdong/1/96 and five different combinations of "internal" genes, in a mouse model. Highly pathogenic, neurotropic variants of genotypes A, C, D, and E were isolated from the brain after a single intranasal passage in mice. Genotype B virus was isolated from lungs only. The mouse brain variants had amino acid changes in all gene products except PB1, NP, and NS1 proteins but no common sets of mutations. We conclude that the original H5N1/01 isolates of genotypes A, C, D, and E were heterogeneous and that highly pathogenic neurotropic variants can be rapidly selected in mice.  相似文献   

4.
Herpes simplex virus type 1 ANG (HSV-1 ANG) is originally nonpathogenic for inbred mice upon intraperitoneal intravenous, or intravaginal inoculation. In contrast, mice died of encephalitis within 4 to 5 days after intracerebral inoculation with this strain. HSV-1 ANG was serially passaged in mouse brains. In two independent series, peripherally pathogenic virus variants had developed and accumulated in the virus progeny after 12 to 15 intracerebral passages. In mixed infections both nonpathogenic and pathogenic viruses replicated at the primary site of infection and spread to various organs. However, only the pathogenic phenotype could be recovered from the spinal cord and the brain. Comparison of the restriction enzyme cleavage patterns of pathogenic ANG and nonpathogenic ANG virus DNAs revealed distinct alterations in the S-segment (US) sequences bounded by coordinates 0.953 and 0.958 in the prototype orientation and by coordinates 0.862 to 0.867 in the IS orientation of the viral genome. However, it is not known whether these alterations are physiologically relevant to the observed changes in pathogenicity. When coinjected intraperitoneally at 50 to 100-fold excess, the nonpathogenic HSV-1 ANG protected mice against its own pathogenic variant as well as against other pathogenic HSV-1 strains. Pathogenic HSV-1 ANG proved to be genetically and phenotypically stable for at least 25 serial passages in tissue culture at either high or low multiplicity of infection.  相似文献   

5.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

6.
Sodium p-chloromercuribenzoate (PCMB) caused a noticeable reduction of infectivity of prototype strains of type A and Lee strain of type B influenza viruses at concentrations of 100 and 200 mug/ml, respectively, after an incubation at 37 C for 60 min. The virucidal effect on A/AA/2/60 (H2N2) strain was dependent on the concentration of the drug and temperature as well as on the time of incubation. The reagent exerted this effect at a concentration which induced little change in the hemagglutinating and neuraminidase activities of the virus. PCMB inhibited by 50% the virus particle-associated RNA polymerase activity of all prototype strains of type A influenza virus at about 2 mug/ml and that of Lee strain of type B influenza virus at 8.5 mug/ml. Other sulfhydryl reagent such as phenylmercuric nitrate also exhibited virucidal effect on A/AA/2/60 virus which paralleled their inhibition of the virus particle-associated RNA polymerase activity. From these results it was considered likely that the virucidal action of PCMB on influenza viruses was attributable to inhibition of the virus particle-associated RNA polymerase activity.  相似文献   

7.
BACKGROUND: Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS: Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE: The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses.  相似文献   

8.
Mok CK  Yen HL  Yu MY  Yuen KM  Sia SF  Chan MC  Qin G  Tu WW  Peiris JS 《Journal of virology》2011,85(18):9641-9645
We investigated the tropism, host responses, and virulence of two variants of A/Quail/Hong Kong/G1/1997 (H9N2) (H9N2/G1) with D253N and Q591K in the PB2 protein in primary human macrophages and bronchial epithelium in vitro and in mice in vivo. Virus with PB2 D253N and Q591K had greater polymerase activity in minireplicon assays, induced more tumor necrosis factor alpha (TNF-α) in human macrophages, replicated better in differentiated normal human bronchial epithelial (NHBE) cells, and was more pathogenic for mice. Taken together, our studies help define the viral genetic determinants that contribute to pathogenicity of H9N2 viruses.  相似文献   

9.
Y Wang  S C Kayman  J P Li    A Pinter 《Journal of virology》1993,67(3):1322-1327
Recent evidence suggests that interactions between spleen focus-forming virus (SFFV) env products and the erythropoietin receptor (EpoR) are responsible for viral pathogenicity. Infection of factor-dependent cell lines expressing epoR (the cloned gene for EpoR) with SFFVP is mitogenic, generating cell lines that are no longer dependent on added growth factor, and an immunoprecipitable complex between EpoR and immature env protein in the endoplasmic reticulum has been identified. The dependence of these in vitro activities on env protein processing and their relationship to pathogenicity of SFFV were explored by using glycosylation site mutants of SFFV env. Mutants carrying Asn-->Asp mutations at each of the two consensus signals for N-linked glycosylation in the N-terminal domain of SFFVAP-L env (gs1 and gs2), the gs1-2- double mutant, and the gs0 quadruple mutant (mutated at all four signals utilized for N-linked glycosylation in SFFVAP-L env) were made. The primary translation products (gp52) of single-site mutant envs were processed into more highly glycosylated forms, and the corresponding viruses induced splenomegaly in susceptible mice, whereas the gs1-2- and gs0 proteins were not processed, and these viruses were not pathogenic. Unprocessed env proteins of both pathogenic and nonpathogenic mutants coprecipitated with EpoR. In the BaF3 cell assay for epoR-dependent mitogenicity, the pathogenic single mutants induced factor-independent growth efficiently whereas the nonpathogenic gs1-2- and gs0 mutants did not. These data demonstrate that the ability of gp52 to form complexes with EpoR in the endoplasmic reticulum is not sufficient for either mitogenicity in cell culture or induction of splenomegaly in mice while supporting the hypothesis that pathogenicity and mitogenicity of SFFV both result from an interaction between EpoR and SFFV env protein.  相似文献   

10.
Gene mutations and reassortment are key mechanisms by which influenza A virus acquires virulence factors. To evaluate the role of the viral polymerase replication machinery in producing virulent pandemic (H1N1) 2009 influenza viruses, we generated various polymerase point mutants (PB2, 627K/701N; PB1, expression of PB1-F2 protein; and PA, 97I) and reassortant viruses with various sources of influenza viruses by reverse genetics. Although the point mutations produced no significant change in pathogenicity, reassortment between the pandemic A/California/04/09 (CA04, H1N1) and current human and animal influenza viruses produced variants possessing a broad spectrum of pathogenicity in the mouse model. Although most polymerase reassortants had attenuated pathogenicity (including those containing seasonal human H3N2 and high-pathogenicity H5N1 virus segments) compared to that of the parental CA04 (H1N1) virus, some recombinants had significantly enhanced virulence. Unexpectedly, one of the five highly virulent reassortants contained a A/Swine/Korea/JNS06/04(H3N2)-like PB2 gene with no known virulence factors; the other four had mammalian-passaged avian-like genes encoding PB2 featuring 627K, PA featuring 97I, or both. Overall, the reassorted polymerase complexes were only moderately compatible for virus rescue, probably because of disrupted molecular interactions involving viral or host proteins. Although we observed close cooperation between PB2 and PB1 from similar virus origins, we found that PA appears to be crucial in maintaining viral gene functions in the context of the CA04 (H1N1) virus. These observations provide helpful insights into the pathogenic potential of reassortant influenza viruses composed of the pandemic (H1N1) 2009 influenza virus and prevailing human or animal influenza viruses that could emerge in the future.  相似文献   

11.
Sodium p-chloromercuribenzoate (PCMB) caused a noticeable reduction of infectivity of prototype strains of type A and Lee strain of type B influenza viruses at concentrations of 100 and 200 μg/ml, respectively, after an incubation at 37 C for 60 min. The virucidal effect on A/AA/2/60 (H2N2) strain was dependent on the concentration of the drug and temperature as well as on the time of incubation. The reagent exerted this effect at a concentration which induced little change in the hemagglutinating and neuraminidase activities of the virus. PCMB inhibited by 50% the virus particle-associated RNA polymerase activity of all prototype strains of type A influenza virus at about 2 μg/ml and that of Lee strain of type B influenza virus at 8.5 μg/ml. Other sulfhydryl reagent such as phenylmercuric nitrate also exhibited virucidal effect on A/AA/2/60 virus which paralleled their inhibition of the virus particle-associated RNA polymerase activity. From these results it was considered likely that the virucidal action of PCMB on influenza viruses was attributable to inhibition of the virus particle-associated RNA polymerase activity.  相似文献   

12.
L G Miasnikova 《Antibiotiki》1976,21(2):138-141
A possibility of developing resistant forms of C1. perfringens during treatment of experimental anaerobic (gaseous) infection with lincomycin was studied. It was shown that treatment of the animals for 7 days resulted in an increase in the resistance by 33-41 times. It was noted that strains with decreased sensitivity to lincomycins had changed morphology and biochemical activity (decreased lecitinase activity, changed biochemical properties), decreased virulence and pathogenicity for animals. So as to obtain the protective effect of the antibiotics in experimental anaerobic (gaseous) infection caused by resistant variants of C1. perfringens it was necessary to increase 1.5-3 times the doses of lincomycin or chlolincocin as compared to the processes induced by sensitive strains.  相似文献   

13.
The properties of RNA polymerases A, B and C isolated from the spleens of mice infected with Rauscher leukemic virus were studied. The solubilized RNA-polymerases A and B were purified 150--300-fold. The dynamic changes in the activities of all forms of RNA-polymerases at different stages of leukosis were studied. At the earliest steps of leukosis a 2-fold increase in the RNA-polymerase B activity followed by a 5-fold increase in the RNA-polymerase A activity was observed. At late stages of leukosis the activity of RNA-polymerase C also showed an increase. The properties of RNA-polymerases A and B from the spleens of virus-infected mice were compared to those of the controls. In leukemic tissues the specific activities of RNA-polymerases A and B were higher as compared to those of the enzymes isolated from the spleens of non-infected mice. However, no significant differences in the enzyme properties in normal and virus-infected animals were revealed. Dihydrorifampicine (200 mkg/ml) caused a 50% inhibition of RNA polymerase A in vitro but had no effect on the activities of RNA-polymerases B and C.  相似文献   

14.
To study the pathogenicity factors of the pandemic A(H1N1) influenza virus, a number of mutant variants of the A/Hamburg/5/2009 (H1N1)pdm09 strain were obtained through passage in chicken embryos, mouse lungs, and MDCK cell culture. After 17 lung-to-lung passages of the A/Hamburg/5/2009 in mice, the minimum lethal dose of the derived variant decreased by five orders of magnitude compared to that of the parental virus. This variant differed from the original virus by nine amino acid residues in the following viral proteins: hemagglutinin (HA), neuraminidase (NA), and components of the polymerase complex. Additional passaging of the intermediate variants and cloning made it possible to obtain pairs of strains that differed by a single amino acid substitution. Comparative analysis of replicative activity, receptor specificity, and virulence of these variants revealed two mechanisms responsible for increased pathogenicity of the virus for mice. Thus, (1) substitutions in HA (Asp225Gly or Gln226Arg) and compensatory mutation decreasing the charge of HA (Lys123Asn, Lys157Asn, Gly158Glu, Asn159Asp, or Lys212Met) altered viral receptor-binding specificity and restored the functional balance between HA and NA; (2) Phe35Leu substitution in the PA protein increased viral polymerase activity.  相似文献   

15.
A total of 36 strains belonging to 19 different species of Acanthamoeba were compared for temperature tolerance, ability to grow in an axenic medium, cytopathic effect in Vero cell culture, and virulence in mice. Pathogenic strains appeared to belong to different species, whereas pathogenic and nonpathogenic strains occurred in one species. Although growth at high temperatures and readiness to grow axenically indicated a potential for pathogenicity, each such strain had to be tested in cell cultures or laboratory mice to determine whether or not it was virulent. This study was not intended to differentiate Acanthamoeba spp., but to provide methods to be used for the specific isolation and identification of pathogenic Acanthamoeba strains.  相似文献   

16.
A total of 36 strains belonging to 19 different species of Acanthamoeba were compared for temperature tolerance, ability to grow in an axenic medium, cytopathic effect in Vero cell culture, and virulence in mice. Pathogenic strains appeared to belong to different species, whereas pathogenic and nonpathogenic strains occurred in one species. Although growth at high temperatures and readiness to grow axenically indicated a potential for pathogenicity, each such strain had to be tested in cell cultures or laboratory mice to determine whether or not it was virulent. This study was not intended to differentiate Acanthamoeba spp., but to provide methods to be used for the specific isolation and identification of pathogenic Acanthamoeba strains.  相似文献   

17.
ABSTRACT: BACKGROUND: Although gene exchange is not likely to occur freely, reassortment between the H5N1 highlypathogenic avian influenza virus (HPAIV) and currently circulating human viruses is aserious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported toactivate the influenza replicon activity. METHODS: The replicon activities of PR8 and WSN strains (H1N1) of influenza containing PA fromHPAIV A/Cambodia/P0322095/2005 (H5N1) and the activity of the chimeric RNApolymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (CPA)was then reconstituted and its growth in cells and pathogenicity in mice examined. Theinterferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells werecompared with those of WSN-infected cells. RESULTS: The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and CPAreplicated better than WSN in cells. However, the multi-step growth of C-PA and itspathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, andcaspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cellsbut not in WSN-infected cells. CONCLUSIONS: Apoptosis and interferon were strongly induced early in C-PA infection, which protected theuninfected cells from expansion of viral infection. In this case, these classical host-virusinteractions contributed to the attenuation of this strongly replicating virus.  相似文献   

18.
We previously reported that influenza A/swine/Korea/1204/2009(H1N2) virus was virulent and transmissible in ferrets in which the respiratory-droplet-transmissible virus (CT-Sw/1204) had acquired simultaneous hemagglutinin (HAD225G) and neuraminidase (NAS315N) mutations. Incorporating these mutations into the nonpathogenic A/swine/Korea/1130/2009(H1N2, Sw/1130) virus consequently altered pathogenicity and growth in animal models but could not establish efficient transmission or noticeable disease. We therefore exploited various reassortants of these two viruses to better understand and identify other viral factors responsible for pathogenicity, transmissibility, or both. We found that possession of the CT-Sw/1204 tripartite viral polymerase enhanced replicative ability and pathogenicity in mice more significantly than did expression of individual polymerase subunit proteins. In ferrets, homologous expression of viral RNA polymerase complex genes in the context of the mutant Sw/1130 carrying the HA225G and NA315N modifications induced optimal replication in the upper nasal and lower respiratory tracts and also promoted efficient aerosol transmission to respiratory droplet contact ferrets. These data show that the synergistic function of the tripartite polymerase gene complex of CT-Sw/1204 is critically important for virulence and transmission independent of the surface glycoproteins. Sequence comparison results reveal putative differences that are likely to be responsible for variation in disease. Our findings may help elucidate previously undefined viral factors that could expand the host range and disease severity induced by triple-reassortant swine viruses, including the A(H1N1)pdm09 virus, and therefore further justify the ongoing development of novel antiviral drugs targeting the viral polymerase complex subunits.  相似文献   

19.
Recovery of pathogenic measles virus from cloned cDNA   总被引:3,自引:0,他引:3       下载免费PDF全文
Reverse genetics technology so far established for measles virus (MeV) is based on the Edmonston strain, which was isolated several decades ago, has been passaged in nonlymphoid cell lines, and is no longer pathogenic in monkey models. On the other hand, MeVs isolated and passaged in the Epstein-Barr virus-transformed marmoset B-lymphoblastoid cell line B95a would retain their original pathogenicity (F. Kobune et al., J. Virol. 64:700-705, 1990). Here we have developed MeV reverse genetics systems based on the highly pathogenic IC-B strain isolated in B95a cells. Infectious viruses were successfully recovered from the cloned cDNA of IC-B strain by two different approaches. One was simple cotransfection of B95a cells, with three plasmids each encoding the nucleocapsid (N), phospho (P), or large (L) protein, respectively, and their expression was driven by the bacteriophage T7 RNA polymerase supplied by coinfecting recombinant vaccinia virus vTF7-3. The second approach was transfection with the L-encoding plasmid of a helper cell line constitutively expressing the MeV N and P proteins and the T7 polymerase (F. Radecke et al., EMBO J. 14:5773-5784, 1995) on which B95a cells were overlaid. Virus clones recovered by both methods possessed RNA genomes identical to that of the parental IC-B strain and were indistinguishable from the IC-B strain with respect to growth phenotypes in vitro and the clinical course and histopathology of experimentally infected cynomolgus monkeys. Thus, the systems developed here could be useful for studying viral gene functions in the context of the natural course of MeV pathogenesis.  相似文献   

20.
The highly pathogenic (HP) influenza viruses H5 and H7 are usually nonpathogenic in mallard ducks. However, the currently circulating HP H5N1 viruses acquired a different phenotype and are able to cause mortality in mallards. To establish the molecular basis of this phenotype, we cloned the human A/Vietnam/1203/04 (H5N1) influenza virus isolate that is highly pathogenic in ferrets, mice, and mallards and found it to be a heterogeneous mixture. Large-plaque isolates were highly pathogenic to ducks, mice, and ferrets, whereas small-plaque isolates were nonpathogenic in these species. Sequence analysis of the entire genome revealed that the small-plaque and the large-plaque isolates differed in the coding of five amino acids. There were two differences in the hemagglutinin (HA) gene (K52T and A544V), one in the PA gene (T515A), and two in the PB1 gene (K207R and Y436H). We inserted the amino acid changes into the wild-type reverse genetic virus construct to assess their effects on pathogenicity in vivo. The HA gene mutations and the PB1 gene K207R mutation did not alter the HP phenotype of the large-plaque virus, whereas constructs with the PA (T515A) and PB1 (Y436H) gene mutations were nonpathogenic in orally inoculated ducks. The PB1 (Y436H) construct was not efficiently transmitted in ducks, whereas the PA (T515A) construct replicated as well as the wild-type virus did and was transmitted efficiently. These results show that the PA and PB1 genes of HP H5N1 influenza viruses are associated with lethality in ducks. The mechanisms of lethality and the perpetuation of this lethal phenotype in ducks in nature remain to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号