首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SSEA-1 is a carbohydrate epitope associated with cell adhesion, migration and differentiation. In the present study, SSEA-1 expression was characterized during turkey embryogenesis with an emphasis on its role in primordial germ cell development. During hypoblast formation, SSEA-1 positive cells were identified in the blastocoel and hypoblast and later in the germinal crescent. Based on location and morphology, these cells were identified, as PGCs. Germ cells circulating through embryonic blood vessels were also SSEA-1 positive. During the active phase of migration, PGCs in the dorsal mesentery and gonad could no longer be identified using the SSEA-1 antibody. The presence of PGCs at corresponding stages was verified using periodic acid Schiff stain. Pretreatment of PGCs with trypsin, alpha-galactosidase and neuraminidase did not restore immunoreactivity to SSEA-1. In general, expression was not limited to the germ cell lineage. SSEA-1 was also detected on the ectoderm, yolk sac endoderm, gut and mesonephric tubules. During neural tube closure, SSEA-1 was expressed by the neural epithelium of the fusing neural folds. Later SSEA-1 was detected in regions of the developing spinal cord. Enzyme pretreatment unmasked the epitope on some neural crest cells and cells in the sympathetic ganglion. The temporal and spatial distribution of SSEA-1 in the turkey embryo suggests a role in early germ cell and neural cell development. The absence of SSEA-1 on turkey gonadal germ cells was different from that observed for the chick. Therefore, while features of avian germ cell development appear to be conserved, expression of SSEA-1 can vary with the species.  相似文献   

2.
Most bilaterians specify primordial germ cells (PGCs) during early embryogenesis using either inherited cytoplasmic germ line determinants (preformation) or induction of germ cell fate through signaling pathways (epigenesis). However, data from nonbilaterian animals suggest that ancestral metazoans may have specified germ cells very differently from most extant bilaterians. Cnidarians and sponges have been reported to generate germ cells continuously throughout reproductive life, but previous studies on members of these basal phyla have not examined embryonic germ cell origin. To try to define the embryonic origin of PGCs in the sea anemone Nematostella vectensis, we examined the expression of members of the vasa and nanos gene families, which are critical genes in bilaterian germ cell specification and development. We found that vasa and nanos family genes are expressed not only in presumptive PGCs late in embryonic development, but also in multiple somatic cell types during early embryogenesis. These results suggest one way in which preformation in germ cell development might have evolved from the ancestral epigenetic mechanism that was probably used by a metazoan ancestor.  相似文献   

3.
4.
SUMMARY. The embryonic development of germ cells in tetrapods is described, focusing on groups with the inductive mode of germ cell specification. In mammals PGCs are induced early in the gastrulation process, they are internalized with future extraembryonic mesoderm in the early posterior primitive streak, and specified soon thereafter. Strong evidence indicates that a similar process occurs in turtles and some other reptiles. In amniotes, the PGCs appear well before formation of the gonad in the posterior trunk, resulting in a period in which they are located outside the embryo before their migration to the gonad. In contrast, in urodeles the PGCs appear relatively late, and throughout development maintain a position close to precursors of the somatic cells of the gonad so that migration is not required. In lampreys early development of germ cells is strikingly similar to that in urodeles, suggesting this is the primitive process. As amniotes evolved large yolky eggs and better access to nutrition, development of the posterior half of the trunk became more dependent on cell proliferation; this was followed or accompanied by a shift of early germ cell development to the equivalent of the early primitive streak. A similar process may have occurred as some basal vertebrates developed large yolky eggs.  相似文献   

5.
We have found that EMA-1, a monoclonal antibody originally raised against mouse embryonal carcinoma (Nulli SCC1) cells (Hahnel & Eddy, 1982), also labels chick primordial germ cells (PGCs). We have used this antibody in immunohistological studies to follow the development of PGCs in the chick embryo from the time of their initial appearance beneath the epiblast, through their migratory phase and subsequent colonization of the germinal epithelium. During hypoblast formation, individual EMA-1-labelled cells appeared to separate from the basal surface of the epiblast and enter the blastocoel, coincident with the appearance of morphologically identifiable PGCs in this same area. EMA-1 continued to label germ cells until the initiation of gametogenesis in each sex; specifically, labelling was absent by 7-8 days of incubation in females and started to decrease at 11 days of incubation in males. There was a recurrence of the epitope on oogonia at 15 days of incubation, but not on spermatogonia during the remainder of development through hatching. These observations are consistent with an epiblast origin for the avian germ line, and are strikingly similar to those reported for the early mouse embryo using the same antibody (Hahnel & Eddy, 1986).  相似文献   

6.
In the mouse embryo, significant numbers of primordial germ cells (PGCs) fail to migrate correctly to the genital ridges early in organogenesis. These usually die in ectopic locations. In humans, 50% of pediatric germ line tumors arise outside the gonads, and these are thought to arise from PGCs that fail to die in ectopic locations. We show that the pro-apoptotic gene Bax, previously shown to be required for germ cell death during later stages of their differentiation in the gonads, is also expressed during germ cell migration, and is required for the normal death of germ cells left in ectopic locations during and after germ cell migration. In addition, we show that Bax is downstream of the known cell survival signaling interaction mediated by the Steel factor/Kit ligand/receptor interaction. Together, these observations identify the major mechanism that removes ectopic germ cells from the embryo at early stages.  相似文献   

7.
8.
Pin1 regulates the timing of mammalian primordial germ cell proliferation   总被引:8,自引:0,他引:8  
Primordial germ cells (PGCs) give rise to male and female germ cells to transmit the genome from generation to generation. Defects in PGC development often result in infertility. In the mouse embryo, PGCs undergo proliferation and expansion during and after their migration to the gonads from 8.5 to 13.5 days post coitum (dpc). We show that a peptidyl-prolyl isomerase, Pin1, is involved in the regulation of mammalian PGC proliferation. We discovered that both the male and female Pin1(-/-) mice had profound fertility defects. Investigation of the reproductive organs revealed significantly fewer germ cells in the adult Pin1(-/-) testes and ovaries than in wild type or heterozygotes, which resulted from Pin1(-/-) males and females being born with severely reduced number of gonocytes and oocytes. Further studies in 8.5 to 13.5 dpc Pin1(-/-) embryos showed that PGCs were allocated properly at the base of the allantois, but their cell expansion was progressively impaired, resulting in a markedly reduced number of PGCs at 13.5 dpc. Analyses using markers of cell cycle parameters and apoptosis revealed that Pin1(-/-) PGCs did not undergo cell cycle arrest or apoptosis. Instead, Pin1(-/-) PGCs had a lower BrdU labeling index compared with wild-type PGCs. We conclude that PGCs have a prolonged cell cycle in the absence of Pin1, which translates into fewer cell divisions and strikingly fewer Pin1(-/-) PGCs by the end of the proliferative phase. These results indicate that Pin1 regulates the timing of PGC proliferation during mouse embryonic development.  相似文献   

9.
Epigenetic reprogramming in mouse primordial germ cells   总被引:29,自引:0,他引:29  
Genome-wide epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. We show here that mouse primordial germ cells (PGCs) exhibit dynamic changes in epigenetic modifications between days 10.5 and 12.5 post coitum (dpc). First, contrary to previous suggestions, we show that PGCs do indeed acquire genome-wide de novo methylation during early development and migration into the genital ridge. However, following their entry into the genital ridge, there is rapid erasure of DNA methylation of regions within imprinted and non-imprinted loci. For most genes, the erasure commences simultaneously in PGCs in both male and female embryos, which is completed within 1 day of development. Based on the kinetics of this process, we suggest that this is an active demethylation process initiated upon the entry of PGCs into the gonadal anlagen. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which new parental imprints are established subsequently. Some repetitive elements, however, show incomplete erasure, which may be essential for chromosome stability and for preventing activation of transposons to reduce the risk of germline mutations. Aberrant epigenetic reprogramming in the germ line would cause the inheritance of epimutations that may have consequences for human diseases as suggested by studies on mouse models.  相似文献   

10.
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.  相似文献   

11.
Summary Lucifer Yellow-Dextran labelling of lower layer cells (LLC), sometimes together with upper layer cells (ULC), of the 64-cellBarbus conchonius embryo resulted in labelled primordial germ cells (PGCs) at 12 h after fertilization (a.f.) in about 25% of cases. The presence of labelled PGCs was independent of the location of the injected blastomere with respect to the later orientation of the embryonic axis. After injection of an ULC alone, however, labelled PGCs were never found. Also, the distribution of labelled somatic cells differed between the ULC- and LLC-injected embryos. When we found fluorescent PGCs, only a few of them were labelled, suggesting that either a single predecessor exists earlier than the 64-cell stage or that the formation of germ cells is a polyclonal process. Tracing the fluorescent cells at successive stages of development shows an extensive mixing with unlabelled cells during the epiboly stage, which might well be the cause of partly unpredictable cell lineages. The chance of being committed to a specific fate is different for the ULC and LLC descendants. This might be due to relatively limited cell mixing between these two cell populations.  相似文献   

12.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

13.
The germ cell lineage segregates from the somatic cell lineages in early embryos. Germ cell determination in mice is not regulated by maternally inherited germplasm, but is initiated within the embryo during gastrulation. However, the mechanisms of germ cell specification in mice remain unknown. We located precursors to primordial germ cells (PGCs) within early embryos, and show here that cell-cell interaction among these precursors is required for germ cell specification. We found that the expression of a calcium-dependent cell adhesion molecule, E-cadherin, is restricted to the proximal region of extra-embryonic mesoderm that contains PGC precursors, and that blocking the functions of E-cadherin with an antibody inhibits PGC formation in vitro. These results showed that E-cadherin-mediated cell-cell interaction among cells containing PGC precursors is essential to directing such cells to the germ cell fate.  相似文献   

14.
In all multicellular organisms, germ cells originating from a fertilized egg have the highly specialized role of transmitting genetic information to the next generation. In many animal species, the establishment of the germ cell lineage is regulated by the maternally inherited germplasm. In mammals, however, germline determination is not based on the unequal distribution of maternal determinants. In the processes of mammalian germ cell formation and subsequent differentiation, the molecular basis of the acquisition of germ cell status is not well understood. Since migrating primordial germ cells (PGCs) are lineage-restricted to the germline, they have already acquired a germ cell specific fate distinct from that of pluri/multi-potent stem cells. However, there have been no molecules known to be expressed in migrating PGCs but not in the inner cell mass of blastocysts. Such molecules should be involved in early germ cell development, and they should make good markers for following the process of PGC formation. To identify such molecules, we performed a subtracted cDNA screening with migrating PGCs and blastocysts in mice, and isolated 11 clones preferentially expressed in PGCs. Here, we report the identification of two genes with similarity to human interferon-induced transmembrane protein (Ifitm) genes, and expression patterns of these genes in forming and in differentiating PGCs. During germ cell formation, mouse Ifitm like (mil)-1 was expressed in putative PGC ancestors in embryos at 6.5-7.5 days post coitum. In migrating PGCs, mil-1 expression was continuously observed and mil-2 expression was first detected during germ cell differentiation.  相似文献   

15.
In all multicellular organisms, germ cells originating from a fertilized egg have the highly specialized role of transmitting genetic information to the next generation. In many animal species, the establishment of the germ cell lineage is regulated by the maternally inherited germplasm. In mammals, however, germline determination is not based on the unequal distribution of maternal determinants. In the processes of mammalian germ cell formation and subsequent differentiation, the molecular basis of the acquisition of germ cell status is not well understood. Since migrating primordial germ cells (PGCs) are lineage-restricted to the germline, they have already acquired a germ cell specific fate distinct from that of pluri/multi-potent stem cells. However, there have been no molecules known to be expressed in migrating PGCs but not in the inner cell mass of blastocysts. Such molecules should be involved in early germ cell development, and they should make good markers for following the process of PGC formation. To identify such molecules, we performed a subtracted cDNA screening with migrating PGCs and blastocysts in mice, and isolated 11 clones preferentially expressed in PGCs. Here, we report the identification of two genes with similarity to human interferon-induced transmembrane protein (Ifitm) genes, and expression patterns of these genes in forming and in differentiating PGCs. During germ cell formation, mouse Ifitm like (mil)-1 was expressed in putative PGC ancestors in embryos at 6.5-7.5 days post coitum. In migrating PGCs, mil-1 expression was continuously observed and mil-2 expression was first detected during germ cell differentiation.  相似文献   

16.
17.
18.
This study explores the origin of primordial germ cells (PGCs) of the mouse and examines their morphology and associations with other cells during early development. PGCs have been selectively stained by the alkaline phosphatase histochemical reaction and viewed by light and electron microscopy from the time they are first detectable in the yolk sac endoderm until they enter the gonadal ridges. There are conflicting reports as to whether the PGCs originate from endodermal cells or whether they originate elsewhere and subsequently enter the endoderm. The observations in the present study favor the premise that PGCs of the mouse do not originate in the endoderm. Furthermore, it was observed that PGCs undergo specific changes in morphology during the developmental period studied and this was interpreted to mean that, although PGCs are set aside early in development as a distinct cell line, they also continue to become more specialized within time. The germ cell line is rather unusual in that it does not exist as a discrete tissue but, instead, resides within various other tissues during its life history. This apparent dependence upon somatic cells is maintained even in adult animals and may be important in serving to maintain or modify the environment of the germ cells.  相似文献   

19.
Eggs of the polyembryonic wasp Copidosoma floridanum undergo a clonal phase of proliferation, which results in the formation of thousands of embryos called secondary morulae and two castes called reproductive and soldier larvae. C. floridanum establishes the germ line early in development, and prior studies indicate that embryos with primordial germ cells (PGCs) develop into reproductive larvae while embryos without PGCs develop into soldiers. However, it is unclear how embryos lacking PGCs form and whether all or only some morulae contribute to the proliferation process. Here, we report that most embryos lacking PGCs form by division of a secondary morula into one daughter embryo that inherits the germ line and another that does not. C. floridanum embryos also incorporate 5-bromo-2′-deoxyuridine (BrdU), which allows PGCs and other cell types to be labeled during the S phase of the cell cycle. Continuous BrdU labeling indicated that all secondary morulae cycle during the proliferation phase of embryogenesis. Double labeling with BrdU and the mitosis marker anti-phospho-histone H3 indicated that the median length of the G2 phase of the cell cycle was 18 h with a minimum duration of 4 h. Mitosis of PGCs and presumptive somatic stem cells in secondary morulae was asynchronous, but cells of the inner membrane exhibited synchronous mitosis. Overall, our results suggest that all secondary morulae contribute to the formation of new embryos during the proliferation phase of embryogenesis and that PGCs are involved in regulating both proliferation and caste formation.  相似文献   

20.
This investigation was undertaken to examine the chemical nature of components on the surface of primordial germ cells (PGCs) possibly related to their directed migration during development. To this end, lectins conjugated to horseradish peroxidase were used as specific histochemical probes to characterize the structure of PGC cell surface glycoconjugates and changes in their composition during and after their migration in the rat embryo. A lectin specific for terminal N-acetylgalactosamine (GalNAc) from Dolichos biflorus intensely stained the cell surface and a perinuclear region assumed to be Golgi zone of PGCs only during their migration. With one exception, no other site in the embryo stained with this lectin as migration proceeded. These observations suggest that the GalNAc-containing glycoconjugates on the surface of PGCs may be of functional importance in regulating the guidance and locomotion of these cells during the course of their extensive migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号