首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Forearm oxygen uptake during maximal forearm dynamic exercise   总被引:1,自引:0,他引:1  
This study was undertaken in an attempt to determine the maximal oxygen uptake in a small muscle group by measuring directly the oxygen expenditure of the forearm. Five healthy medical students volunteered. The subjects' maximal forearm work capacity was determined on a spring-loaded hand ergometer. Exercise was continued until exhaustion by pain or fatigue. Two weeks later intra-arterial and intravenous catheters were placed in the dominant arm. Blood samples for measurement of oxygen concentration were collected via the catheters. Forearm blood flow was measured by means of the indicator dilution technique. Oxygen uptake was determined according to the Fick principle. The forearm oxygen uptake attained at maximal work loads was a mean of 201 (SD +/- 56) mumol.min-1.100 ml-1. It was impossible at maximal exercise to discern a plateau of the oxygen uptake curve in relation to work output. It is suggested that a plateau in the oxygen uptake curve is not a useful criterion for maximal oxygen uptake in a small muscle group. Skeletal muscle may have an unused capacity for oxygen consumption even at maximal exercise intensity where muscle work cannot be continued due to muscle pain and fatigue.  相似文献   

3.
4.
5.
6.
7.
The purpose of the study was to compare the cardiovascular, respiratory and metabolic responses to exercise of highly endurance trained subjects after 3 different nights i.e. a baseline night, a partial sleep deprivation of 3 h in the middle of the night and a 0.25-mg triazolam-induced sleep. Sleep-waking chronobiology and endurance performance capacity were taken into account in the choice of the subjects. Seven subjects exercised on a cycle ergometer for a 10-min warm-up, then for 20 min at a steady exercise intensity (equal to the intensity corresponding to 75% of the predetermined maximal oxygen consumption) followed by an increased intensity until exhaustion. The night with 3 h sleep loss was accompanied by a greater number of periods of wakefulness (P less than 0.01) and fewer periods of stage 2 sleep (P less than 0.05) compared with the results recorded during the baseline night. Triazolam-induced sleep led to an increase in stage 2 sleep (P less than 0.05), a decrease in wakefulness (P less than 0.05) and in stage 3 sleep (P less than 0.05). After partial sleep deprivation, there were statistically significant increases in heart rate (P less than 0.05) and ventilation (P less than 0.05) at submaximal exercise compared with results obtained after the baseline night. Both variables were also significantly enhanced at maximal exercise, while the peak oxygen consumption (VO2) dropped (P less than 0.05) even though the maximal sustained exercise intensity was not different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Transcutaneous oxygen tension (TcPO2) was monitored during maximal exercise in 10 patients with stable moderate to severe claudication. The TcPO2 fell by 16% at the onset of claudication and 32% at the maximum walking distance. On resting this decrease reached a maximum of 66% roughly four minutes after exercise. This was followed by a steady recovery. The percentage changes were reproducible in each patient and were appreciably different from the TcPO2 exercise profiles of normal healthy volunteers. TcPO2 monitoring during exercise is a simple, reproducible, cheap, and useful technique for assessing claudication and compares favourably with other techniques used to quantify this condition.  相似文献   

9.
Individuals greater than or equal to 60 yr of age are more susceptible to hyperthermia than younger people. However, the mechanisms involved remain unclear. To gain further insight, we examined the heat loss responses of 7 young (24-30 yr) and 13 older (58-74 yr) men during 20 min of cycle exercise [67.5% maximal O2 uptake (VO2max)] in a warm environment (30 degrees C, 55% relative humidity). Forearm blood flow (FBF) and chest sweat rate (SR) were plotted as a function of the weighted average of mean skin and esophageal temperatures [Tes(w)] during exercise. The sensitivity and threshold for each response were defined as the slope and Tes(w) at the onset of the response, respectively. When the young sedentary men were compared with a subgroup (n = 7) of the older physically active men with similar VO2max, the SR and FBF responses of the two groups did not differ significantly. However, when the young men were compared with a subgroup of older sedentary men with a similar maximal O2 pulse, the SR and FBF sensitivities were significantly reduced by 62 and 40%, respectively. These findings suggest that during a short exercise bout either 1) there is no primary effect of aging on heat loss responses but, rather, changes are associated with the age-related decrease in VO2max or 2) the decline in heat loss responses due to aging may be masked by repeated exercise training.  相似文献   

10.
The purpose of the present study was to investigate the contribution of ventilation to arterial O2 desaturation during maximal exercise. Nine untrained subjects and 22 trained long-distance runners [age 18-36 yr, maximal O2 uptake (VO2max) 48-74 ml.min-1 x kg-1] volunteered to participate in the study. The subjects performed an incremental exhaustive cycle ergometry test at 70 rpm of pedaling frequency, during which arterial O2 saturation (SaO2) and ventilatory data were collected every minute. SaO2 was estimated with a pulse oximeter. A significant positive correlation was found between SaO2 and end-tidal PO2 (PETO2; r = 0.72, r2 = 0.52, P < 0.001) during maximal exercise. These statistical results suggest that approximately 50% of the variability of SaO2 can be accounted for by differences in PETO2, which reflects alveolar PO2. Furthermore, PETO2 was highly correlated with the ventilatory equivalent for O2 (VE/VO2; r = 0.91, P < 0.001), which indicates that PETO2 could be the result of ventilation stimulated by maximal exercise. Finally, SaO2 was positively related to VE/VO2 during maximal exercise (r = 0.74, r2 = 0.55, P < 0.001). Therefore, one-half of the arterial O2 desaturation occurring during maximal exercise may be explained by less hyperventilation, specifically for our subjects, who demonstrated a wide range of trained states. Furthermore, we found an indirect positive correlation between SaO2 and ventilatory response to CO2 at rest (r = 0.45, P < 0.05), which was mediated by ventilation during maximal exercise. These data also suggest that ventilation is an important factor for arterial O2 desaturation during maximal exercise.  相似文献   

11.
Five moderately fit males (50.8 ml.kg-1.min-1) performed 14 continuous type VO2 max tests on a motor-driven treadmill. Randomly assigned experimental sessions, consisting of three tests each and separated by 10 (tests 1, 2, 3), 20 (tests 4, 5, 6), 30 (tests 7, 8, 9), or 40 (tests 10, 11, 12) min, were conducted at a consistent hour for each subject every 4th day. Two separately performed tests were also included in the random assignment with the test eliciting the highest VO2 max value designated as the standard reference (SR). VO2 max values for tests 1 through 12 were not significantly different from the SR in spite of elevated pretest blood lactate concentrations ranging from 5 mM to 16 mM. Performance time was reduced for all tests other than tests 1, 4, 7, and 10, reaching the level of statistical significance (P less than 0.05) in tests 2, 3, 5, 6, and 9. It was concluded that valid and reliable assessment of VO2 max is possible even though testing is initiated with subjects in varying stages of exhaustion.  相似文献   

12.
13.
14.
The purpose of this study was to investigate the influence of the shuttle test protocol (20-MST) and the resulting lactacidaemia on maximal velocity (Vmax) and maximal oxygen uptake (VO2max). Firstly, three randomly assigned tests to exhaustion were performed by 12 subjects: the treadmill test, the 20-MST, and a continuous running track test using the same prerecorded 1-min protocol as in the 20-MST (T1). One week later, subjects performed another track test, which was conducted up to the same level of effort as attained during the 20-MST (T2). For each test, Vmax, VO2max, lactate concentration at rest and during recovery, maximal heart rate, and distance covered were determined. The results indicated that the 20-MST underestimated Vmax; only T1 satisfactorily assessed Vmax (F = 15.49, P < 0.001). At the same level of effort, the peak blood lactate concentration (t = 2.7, P < 0.02) and VO2max (t = 11.35, P < 0.001) values were higher for the shuttle than for the continuous protocol. It was concluded that Vmax was limited by the running backwards and forwards in the protocol of the shuttle test. The higher values of peak blood lactate concentration and its earlier appearance obtained for the shuttle may have been one of the limiting factors of Vmax. However, the higher values of VO2max obtained for the 20-MST were most likely due to a combination of the relative hyperlactacidaemia and the biomechanical complexities required for this type of protocol.  相似文献   

15.
16.
We tested the hypothesis that kinetics of O(2) uptake (VO(2)) measured in the transition to exercise near or above peak VO(2) (VO(2 peak)) would be slower than those for subventilatory threshold exercise. Eight healthy young men exercised at approximately 57, approximately 96, and approximately 125% VO(2 peak). Data were fit by a two- or three-component exponential model and with a semilogarithmic transformation that tested the difference between required VO(2) and measured VO(2). With the exponential model, phase 2 kinetics appeared to be faster at 125% VO(2 peak) [time constant (tau(2)) = 16.3 +/- 8.8 (SE) s] than at 57% VO(2 peak) (tau(2) = 29. 4 +/- 4.0 s) but were not different from that at 96% VO(2 peak) exercise (tau(2) = 22.1 +/- 2.1 s). VO(2) at the completion of phase 2 was 77 and 80% VO(2 peak) in tests predicted to require 96 and 125% VO(2 peak). When VO(2) kinetics were calculated with the semilogarithmic model, the estimated tau(2) at 96% VO(2 peak) (49.7 +/- 5.1 s) and 125% VO(2 peak) (40.2 +/- 5.1 s) were slower than with the exponential model. These results are consistent with our hypothesis and with a model in which the cardiovascular system is compromised during very heavy exercise.  相似文献   

17.
To determine the effect of posture on maximal O2 uptake (VO2 max) and other cardiorespiratory adaptations to exercise training, 16 male subjects were trained using high-intensity interval and prolonged continuous cycling in either the supine or upright posture 40 min/day 4 days/wk for 8 wk and 7 male subjects served as non-training controls. VO2 max measured during upright cycling and supine cycling, respectively, increased significantly (P less than 0.05) by 16.1 +/- 3.4 and 22.9 +/- 3.4% in the supine training group (STG) and by 14.6 +/- 2.0 and 6.0 +/- 2.0% in the upright training group (UTG). The increase in VO2 max measured during supine cycling was significantly greater (P less than 0.05) in the STG than in the UTG. The increase in VO2 max in the UTG was significantly greater (P less than 0.05) when measured during upright exercise than during supine exercise. However, there was no significant difference in posture-specific VO2 max adaptations in the STG. A postural specificity was also evident in other maximal cardiorespiratory variables (ventilation, CO2 production, and respiratory exchange ratio). In the UTG, maximal heart rate decreased significantly (P less than 0.05) only during supine cycling; there was no significant difference in maximal heart rate after training in the STG. We conclude that posture affects maximal cardiorespiratory adaptations to cycle training. Additionally, supine training is more effective than upright training in increasing maximal cardiorespiratory responses measured during supine exercise, and the effects of supine training generalize to the upright posture to a greater extent than the effects of upright training generalize to the supine posture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The aim of this study was to determine whether excessive oxygen uptake (Vo2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak Vo2, respectively. Vo2 kinetics above zero watts was obtained by subtracting Vo2 at zero watts of previous exercise (DeltaVo2). Delta Vo2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the Delta Vo2 applicable to heavy exercise. The difference between Delta Vo2 in heavy exercise and Delta Vo2 estimated from the value of moderate exercise was obtained. The obtained Vo2 was defined as excessive Vo2. The time constant of excessive Vo2 during exercise (1.88+/-0.70 min) was significantly shorter than that during recovery (9.61+/-6.92 min). Thus, there was excessive Vo2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery.  相似文献   

19.
Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ~ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号