首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern sugarcane cultivars are highly polyploid and aneuploid hybrids, which are propagated as clones. Their complex genome structure comprises 100–130 chromosomes and 10–13 hom(e)ologous copies of most loci. There is preliminary evidence of very high heterozygosity, with implications for genetic improvement approaches ranging from marker-assisted selection to transgenics. Here, we report that sugarcane cultivar Q200 has at least nine alleles at the Loading Stem Gene (ScLSG) locus. Exon–intron structure is identical and the predicted protein products show at least 92 % identity, across sugarcane alleles and the Sorghum homologue Sb07g027880. There is substantial variation in the 5′ UTR and promoter regions including numerous allele-specific nucleotide polymorphisms, insertions and deletions. We developed an allele-specific qRT-PCR method to undertake the first compelling test of allele-specific expression in polyploid sugarcane. Seven alleles distinguished by this method all showed peak expression in the sucrose-loading zone of the stem, but there was apparent variability in expression patterns across other tissues. The ScLSG2 and ScLSG5 alleles appear promising for specificity of expression in stems, relative to leaf, meristem, emerging shoot and root tissues. Within the stem, there was activity in parenchyma, vascular and rind tissues. This expression pattern is of interest in basic research and biotechnology aimed at enhanced sucrose content, engineering value-added products, and manipulation of stem biomass composition.  相似文献   

2.
3.
The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5′ untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.  相似文献   

4.
Transgenic solutions are being widely explored to develop huanglongbing (HLB) resistance in citrus. A critical component of a transgenic construct is the promoter, which determines tissue specificity and level of target gene expression. This study compares the characteristics of five promoters regulating the beta-glucuronidase (GUS) reporter gene in the trifoliate hybrid rootstock US-802. Two of the selected promoters direct high levels of constitutive transgene expression in other dicotyledonous plants: 2X35S, the tandem-repeat promoter of the cauliflower mosaic virus 35S gene and bul409S, a truncation of the potato polyubiquitin promoter. Because Candidatus Liberibacter, the Gram-negative bacterium associated with HLB, infects only the phloem tissue, it may be advantageous to limit transgene expression to the vascular tissue and reduce expression in the fruit. Thus, we also tested three promoters that demonstrate phloem specificity when transformed and expressed in other plants: WDV, from wheat dwarf geminivirus; AtSUC2, the sucrose-H+ symporter gene promoter from Arabidopsis; and CsSUS, the sucrose synthase promoter from citrus. Histochemical staining for GUS activity was observed throughout leaf and stem tissues for the constitutive promoters, while the three phloem-specific promoters largely showed the expected tissue-specific staining. Expression of GUS in some individual transformants with promoters CsSUS and WDV appeared leaky, with some laminar tissue staining. Relative quantification of qRT-PCR data revealed a wide range of mRNA abundance from transgenics with each of the five promoters. Fluorometry also revealed that GUS activity differed depending on the promoter used, but mRNA levels and enzyme activity were not highly correlated.  相似文献   

5.
Multipotent mesenchymal stem cells (MSCs) can undergo self-renewal and give rise to multi-lineages under given differentiation cues. It is frequently desirable to achieve a stable and high level of transgene expression in MSCs in order to elucidate possible molecular mechanisms through which MSC self-renewal and lineage commitment are regulated. Retroviral or lentiviral vector-mediated gene expression in MSCs usually decreases over time. Here, we choose to use the piggyBac transposon system and conduct a systematic comparison of six commonly-used constitutive promoters for their abilities to drive RFP or firefly luciferase expression in somatic HEK-293 cells and MSC iMEF cells. The analyzed promoters include three viral promoters (CMV, CMV-IVS, and SV40), one housekeeping gene promoter (UbC), and two composite promoters of viral and housekeeping gene promoters (hEFH and CAG-hEFH). CMV-derived promoters are shown to drive the highest transgene expression in HEK-293 cells, which is however significantly reduced in MSCs. Conversely, the composite promoter hEFH exhibits the highest transgene expression in MSCs whereas its promoter activity is modest in HEK-293 cells. The reduced transgene expression driven by CMV promoters in MSCs may be at least in part caused by DNA methylation, or to a lesser extent histone deacetlyation. However, the hEFH promoter is not significantly affected by these epigenetic modifications. Taken together, our results demonstrate that the hEFH composite promoter may be an ideal promoter to drive long-term and high level transgene expression using the piggyBac transposon vector in progenitor cells such as MSCs.  相似文献   

6.
7.
To analyse cell migration and the differentiation potential of migratory stem cells in Hydractinia, we generated animals with an eGFP reporter gene stably expressed and transmitted via the germline. The transgene was placed under the control of two different actin promoters and the promoter of elongation factor-1α. One actin promoter (Act-II) and the EF-1α promoter enabled expression of the transgene in all cells, the other actin promoter (Act-I) in epithelial and gametogenic cells, but not in the pluripotent migratory stem cells. We produced chimeric animals consisting of histocompatible wild type and transgenic parts. When the transgene was under the control of the epithelial cell specific actin-I promoter, non-fluorescent transgenic stem cells immigrated into wild type tissue, stopped migration and differentiated into epithelial cells which then commenced eGFP-expression. Migratory stem cells are therefore pluripotent and can give rise not only to germ cells, nematocytes and nerve cells, but also to epithelial cells. While in somatic cells expression of the act-I promoter was restricted to epithelial cells it became also active in gametogenesis. The act-I gene is expressed in spermatogonia, oogonia and oocytes. In males the expression pattern showed that migratory stem cells are the precursors of both the spermatogonia and their somatic envelopes. Comparative expression studies using the promoters of the actin-II gene and the elongation factor-1α gene revealed the potential of transgenic techniques to trace the development of the nervous system.  相似文献   

8.
Many promoters have been used to drive expression of heterologous transgenes in insects. One major obstacle in the study of non-model insects is the dearth of useful promoters for analysis of gene function. Here, we investigated whether the promoter of the immediate-early gene, ie1, from the Bombyx mori nucleopolyhedrovirus (BmNPV) could be used to drive efficient transgene expression in a wide variety of insects. We used a piggyBac-based vector with a 3xP3-DsRed transformation marker to generate a reporter construct; this construct was used to determine the expression patterns driven by the BmNPV ie1 promoter; we performed a detailed investigation of the promoter in transgene expression pattern in Drosophila melanogaster and in B. mori. Drosophila and Bombyx belong to different insect orders (Diptera and Lepidoptera, respectively); however, and to our surprise, ie1 promoter-driven expression was evident in several tissues (e.g., prothoracic gland, midgut, and tracheole) in both insects. Furthermore, in both species, the ie1 promoter drove expression of the reporter gene from a relatively early embryonic stage, and strong ubiquitous ie1 promoter-driven expression continued throughout the larval, pupal, and adult stages by surface observation. Therefore, we suggest that the ie1 promoter can be used as an efficient expression driver in a diverse range of insect species.  相似文献   

9.
10.

Key message

Porteresia ubiquitin 5′ regulatory region drives transgene expression in monocots and dicots.

Abstract

Ubiquitin promoters are promising candidates for constitutive transgene expression in plants. In this study, we isolated and characterized a novel 5′ regulatory sequence of a ubiquitin gene from Porteresia coarctata, a stress-tolerant wild grass species. Through functional analysis in heterologous plant systems, we have demonstrated that full length (Port Ubi2.3) or truncated sequence (PD2) of the isolated regulatory fragment can drive constitutive expression of GUS in monocots and/or dicots. In silico analysis of Port Ubi2.3 has revealed the presence of a 640 bp core promoter region followed by two exons and two introns with numerous putative cis-acting sites scattered throughout the regulatory region. Transformation and expression studies of six different deletion constructs in rice, tobacco and sugarcane revealed that the proximal intron has an enhancing effect on the activity of the core promoter in both monocots and dicots, whereas, Port Ubi2.3 was able to render strong expression only in monocots. This regulatory sequence is quite distinct from the other reported ubiquitin promoters in structure and performs better in monocots compared to other commonly used promoters—maize Ubi1 and Cauliflower Mosaic Virus 35S.  相似文献   

11.
12.
The activity of constitutive promoters was compared in transgenic alfalfa plants using two marker genes. Three promoters, the 35S promoter from cauliflower mosaic virus (CaMV), the cassava vein mosaic virus (CsVMV) promoter, and the sugarcane bacilliform badnavirus (ScBV) promoter were each fused to the beta-glucuronidase (gusA) gene. The highest GUS enzyme activity was obtained using the CsVMV promoter and all alfalfa cells assayed by in situ staining had high levels of enzyme activity. The 35S promoter was expressed in leaves, roots, and stems at moderate levels, but the promoter was not active in stem pith cells, root cortical cells, or in the symbiotic zones of nodules. The ScBV promoter was active primarily in vascular tissues throughout the plant. In leaves, GUS activity driven by the CsVMV promoter was approximately 24-fold greater than the activity from the 35S promoter and 38-fold greater than the activity from the ScBV promoter. Five promoters, the double 35S promoter, figwort mosaic virus (FMV) promoter, CsVMV promoter, ScBV promoter, and alfalfa small subunit Rubisco (RbcS) promoter were used to control expression of a cDNA from Trichoderma atroviride encoding an endochitinase (ech42). Highest chitinase activity in leaves, roots, and root nodules was obtained in plants containing the CsVMV:ech42 transgene. Plants expressing the endochitinase were challenged with Phoma medicaginis var. medicaginis, the causal agent of spring black stem and leaf spot of alfalfa. Although endochitinase activity in leaves of transgenic plants was 50- to 2650-fold greater than activity in control plants, none of the transgenic plants showed a consistent increase in disease resistance compared to controls. The high constitutive levels of both GUS and endochitinase activity obtained demonstrate that the CsVMV promoter is useful for high-level transgene expression in alfalfa.  相似文献   

13.
Flower-specific promoters can enable transgenic enhancement of valuable ornamental traits, including flower shape and color. However, the identification of strong, tissue-specific promoters remains a limiting factor. To obtain enhanced flower-specific promoters, we constructed four chimeric promoters (p35S-PCHS-Ω, p35S-LCHS-Ω, pOCS-PCHS-Ω and pOCS-LCHS-Ω) combining the 35S or OCS enhancer fused to a 302 bp CHSA core promoter fragment from petunia (PCHS) or a 307 bp CHS core promoter fragment from lily (LCHS), and also containing an omega element (Ω). Each promoter was fused to the β-glucuronidase (GUS) reporter gene, and we examined the levels and tissue specificity of GUS expression in transgenic Torenia fournieri. p35S-PCHS-Ω and p35S-LCHS-Ω drove strong, constitutive GUS expression in all tissues, especially in colored corollas (p35S-PCHS-Ω) or in colored corollas and roots (p35S-LCHS-Ω). pOCS-PCHS-Ω drove stronger GUS expression in colored corollas than in other tissues but expression was weaker than that of p35S-PCHS-Ω. pOCS-LCHS-Ω drove GUS in colored corollas but also in roots. Among the four chimeric promoters, pOCS-PCHS-Ω exhibited stronger activity only in colored corollas, making it useful for transgenic enhancement of floral traits, such as expressing ‘blue genes’ in lily to produce new lines with blue flowers.  相似文献   

14.
Seeds contain storage compounds, from various carbohydrates to proteins and lipids, which are synthesized during seed development. For the purposes of many plant researches or commercial applications, developing promoter systems expressing specifically in seeds or in particular constituents or tissues/compartments of seeds are indispensable. To screen genes dominantly or specifically expressed in seed tissues, we analyzed Arabidopsis ATH1 microarray data open to the public. Thirty-two candidate genes were selected and their expressions in seed tissues were confirmed by RT-PCR. Finally, seven genes were selected for promoter analysis. The promoters of seven genes were cloned into pBI101 vector and transformed into Arabidopsis to assay histochemical β-glucuronidase (GUS) activity. We found that Pro-at3g03230 promoter drove GUS expression in a chalazal endosperm, Pro-at4g27530:GUS expressed in both chalazal endosperm and embryo, Pro-at4g31830 accelerated GUS expression both in radicle and procambium, Pro-at5g10120 and Pro-at5g16460 drove GUS expression uniquely in embryo, Pro-at5g53100:GUS expressed only in endosperm, and Pro-at5g54000 promoted GUS expression in both embryo and inner integument. These promoters can be used for expressing any genes in specific seed tissues for practical application.  相似文献   

15.
16.

Background

RdCVF and RdCVF2, encoded by the nucleoredoxin-like genes NXNL1 and NXNL2, are trophic factors with therapeutic potential that are involved in cone photoreceptor survival. Studying how their expression is regulated in the retina has implications for understanding both their activity and the mechanisms determining cell-type specificity within the retina.

Methodology/Principal Findings

In order to define and characterize their promoters, a series of luciferase/GFP reporter constructs that contain various fragments of the 5′-upstream region of each gene, both murine and human, were tested in photoreceptor-like and non-photoreceptor cell lines and also in a biologically more relevant mouse retinal explant system. For NXNL1, 5′-deletion analysis identified the human −205/+57 bp and murine −351/+51 bp regions as having promoter activity. Moreover, in the retinal explants these constructs drove expression specifically to photoreceptor cells. For NXNL2, the human −393/+27 bp and murine −195/+70 bp regions were found to be sufficient for promoter activity. However, despite the fact that endogenous NXNL2 expression is photoreceptor-specific within the retina, neither of these DNA sequences nor larger upstream regions demonstrated photoreceptor-specific expression. Further analysis showed that a 79 bp NXNL2 positive regulatory sequence (−393 to 315 bp) combined with a 134 bp inactive minimal NXNL1 promoter fragment (−77 to +57 bp) was able to drive photoreceptor-specific expression, suggesting that the minimal NXNL1 fragment contains latent elements that encode cell-type specificity. Finally, based on bioinformatic analysis that suggested the importance of a CRX binding site within the minimal NXNL1 fragment, we found by mutation analysis that, depending on the context, the CRX site can play a dual role.

Conclusions/Significance

The regulation of the Nucleoredoxin-like genes involves a CRX responsive element that can act as both as a positive regulator of promoter activity and as a modulator of cell-type specificity.  相似文献   

17.
The aim of this study was to ensure the systematic protein expression of two genes (GTG and Cry1Ac) under the influence of two different constitutive promoters i.e. Ubiquitin-1 and CaMV 35S promoters in different sugarcane lines. PCR amplification of GTG and Cry1Ac was achieved from putative transgenic plants through gene specific primers. Qualitative comparisons of GTG and Cry1Ac genes expression under two different promoters were obtained through protein dot blot and dipstick assay. The appearance of comparatively dark color dots in dot blot and dark color bands on dipstick with Ubiquitin as compared to light color bands with CaMV35S promoter, qualitatively confirmed high protein expression of two genes under Ubiquitin promoter. In quantitative gene expression comparisons maximum optical density (OD) at 450 nm of UV-light was obtained for GTG (3.7 OD) and Cry1Ac (3 OD) under Ubiquitin promoter, while for GTG (1.6 OD) and Cry1Ac (2.5 OD) with CaMV 35S promoter. The results indicated higher expression of two genes under Ubiquitin-1 promoter in sugarcane was found as compared to CaMV 35S promoter. This study provides a guide for stable and high expression of transgenes with reference to Ubiquitin-1 promoter which can be utilize in sugarcane as well as in other monocots.  相似文献   

18.

Key message

This study addresses T-DNA insert stability and transgene expression consistency in multiple cycles of field propagated sugarcane. T-DNA inserts are stable; no transgene rearrangements were observed. AmCYAN1 and PMI protein accumulation levels were maintained. There was no evidence that production of either protein declined across generations and no transgene silencing was observed in three commercial sugarcane varieties through commercially relevant ratooning, propagation-by-setts, and micro-propagation generation processes over 4 years of field testing. Long term transgene expression consistency and T-DNA insert stability can be achieved in sugarcane, suggesting that it is highly probable that transgenic sugarcane can be successfully commercialized.

Abstract

This study addresses T-DNA insert stability and transgene expression consistency in multiple cycles of field propagated sugarcane. These data are critical supporting information needed for successful commercialization of GM sugarcane. Here seventeen transgenic events, containing the AmCYAN1 gene driven by a CMP promoter and the E. coli PMI gene driven by either a CMP or Ubi promoter, were used to monitor T-DNA insert stability and consistency of transgene encoded protein accumulation through commercially relevant ratooning, propagation-by-setts, and micro-propagation generation processes. The experiments were conducted in three commercial sugarcane varieties over 4 years of field testing. DNA gel blot analysis showed that the T-DNA inserts are stable; no transgene rearrangements were observed. Quantitative ELISA showed no evidence of decreasing AmCYAN1 and PMI protein levels across generations and no transgene silencing was observed. These results indicate that long term transgene expression consistency and T-DNA insert stability can be achieved in sugarcane, suggesting that it is highly probable that transgenic sugarcane can be successfully commercialized.
  相似文献   

19.
Plant transgenesis often requires the use of tissue-specific promoters to drive the transgene expression exclusively in targeted tissues. Although the eukaryotic promoters are expected to stay silent in Escherichia coli, when the promoter-transgene units within the plant transformation vectors are constructed and propagated, some eukaryotic promoters have been reported to be active in prokaryotes. The potential activity of plant promoter in E. coli cells should be considered in cases of expression of proteins that are toxic for host cells, environmental risk assessment or the stability in E. coli of plant vectors for specific Cre/loxP applications. In this study, DNA fragments harbouring four embryo- and/or pollen-specific Arabidopsis thaliana promoters were investigated for their ability to drive heterologous gene expression in E. coli cells. For this, they were fused to gfp:gus reporter genes in the pCAMBIA1304 vector. Although BPROM, bacterial sigma70 promoter recognition program identified several sequences with characteristics similar to bacterial promoters including -10 and -35 sequences in each of tested fragments, the experimental approach showed that only one promoter fragment was able to drive relatively strong- and one promoter fragment relatively weak-GUS expression in E. coli cells. Remaining two tested promoters did not drive any transgene expression in bacteria. Our results also showed that cloning of a shorter plant promoter sequence into vectors containing lacZ α-complementation system can increase the probability of gene expression driven by upstream located lac promoter. This should be considered when cloning of plant expression units, the expression of which is unwanted in E. coli.  相似文献   

20.
Variable gene expression amongst transgenic lines occurs due to copy number and to random associations of incoming DNA with chromosomal elements at the site of integration. Here we describe a method of identifying sites permissive for transgene expression and their use for efficient introduction of single copy transgenes by homologous recombination. ES clones were selected in HAT medium for expression of a randomly integrated HPRT marker lying 5′ to an Oct4/lacZ transgene. 794 clones were assessed in vitro for appropriate down-regulation of lacZ following differentiation. Two clones were chosen for further analysis which displayed appropriate and inappropriate gene regulation (clones 710 and 91, respectively). Three developmental promoters (thyroglobulin, Hox2.6 and Myf5) were then sequentially introduced into the original insertion sites in each clone (710 and 91) by homologous recombination, to drive expression of lacZ. Transgenic embryos were assessed for their ability to direct lacZ expression to tissues in which the respective promoter sequences are normally active. The site which appropriately down-regulated lacZ in vitro (710) also showed appropriate in vivo regulation of lacZ from the three developmental promoters. Site 91, however, directed an additional pattern of ectopic expression, which was common to all four promoters. Pre-selection of genomic sites for the introduction of transgenes by gene targeting improves the repeatability of transgene expression and provides an efficient means of single copy transgene introduction by homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号