首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The tapetum is a layer of cells covering the inner surface of pollen sac wall. It contributes to anther development by providing enzymes and materials for pollen coat biosynthesis and nutrients for pollen development. At the end of anther development, the tapetum is degenerated, and the anther is dehisced, releasing mature pollen grains. In Arabidopsis, several genes are known to regulate tapetum formation and pollen development. However, little is known about how tapetum degeneration and anther dehiscence are regulated. Here, we show that an activation-tagged mutant of the S HI-R ELATED S EQUENCE 7 (SRS7) gene exhibits disrupted anther dehiscence and abnormal floral organ development in addition to its dwarfed growth with small, curled leaves. In the mutant hypocotyls, cell elongation was reduced, and gibberellic acid sensitivity was diminished. Whereas anther development was normal, its dehiscence was suppressed in the dominant srs7-1D mutant. In wild-type anthers, the tapetum disappeared at anther development stages 11 and 12. In contrast, tapetum degeneration was not completed at these stages, and anther dehiscence was inhibited, causing male sterility in the mutant. The SRS7 gene was expressed mainly in the filaments of flowers, where the DEFECTIVE-IN-ANTHER-DEHISCENCE 1 (DAD1) enzyme catalyzing jasmonic acid (JA) biosynthesis is accumulated immediately before flower opening. The DAD1 gene was induced in the srs7-1D floral buds. In fully open flowers, the SRS7 gene was also expressed in pollen grains. It is therefore possible that the abnormal anther dehiscence and floral development of the srs7-1D mutant would be related with JA.  相似文献   

2.
The floral organs of the male sterile stamenless-2 (sl-2/sl-2) mutant of tomato (Lycopersicon esculentum Mill.) contain significantly higher level of polyamines than those of the normal (R Rastogi, VK Sawhney [1990] Plant Physiol 93: 439-445). The effects of putrescine, spermidine and spermine, and three different inhibitors of polyamine biosynthesis on the in vitro development of floral buds of the normal and sl-2/sl-2 mutant were studied. The polyamines were inhibitory to the in vitro growth and development of both the normal and mutant floral buds and they induced abnormal stamen development in normal flowers. The inhibitors of polyamine biosynthesis also inhibited the growth and development of floral organs of the two genotypes, but the normal flowers showed greater sensitivity than the mutant. The inhibitors also promoted the formation of normal-looking pollen in stamens of some mutant flowers. The effect of the inhibitors on polyamine levels was not determined. The polyamine-induced abnormal stamen development in the normal, and the inhibitor-induced production of normal-looking pollen in mutant flowers support the suggestion that the elevated polyamine levels contribute to abnormal stamen development in the sl-2/sl-2 mutant of tomato.  相似文献   

3.
The tapetum of the anther locule encloses the male reproductive cells and plays a supportive role for normal pollen development. However, the underlying mechanism remains less understood. Previously, we identified a complete recessive male sterile mutant, post-meiotic deficient anther1 (pda1), with abnormal postmeiotic tapetal development. In this study we comprehensively characterized pda1. Chemical analysis uncovered that pda1 anther had significant lower levels of cutin monomers and cuticular waxes. PDA1 gene encodes an ATP-binding cassette (ABC) half-transporter, namely OsABCG15, which is conserved from algae to higher plants. In situ RNA hybridization assay showed that PDA1 is strongly expressed in tapetal cells, and weakly in microspores during the anther development. Additionally, the expression of two pollen exine biosynthetic genes CYP704B2 and CYP703A3 was dramatically reduced in pda1 mutant anthers. Altogether, these observations suggest that the tapetum-expressed ABC transporter PDA1 plays a crucial role in secreting lipidic precursors from the tapetum to developing microspores and the anther epidermis.  相似文献   

4.
对云南泸西栽培灯盏花群体进行调查,发现了灯盏花雄性不育种质个体,其出现频率约为1.06×10-4.对所发现的灯盏花不育株形态特征及其花药发育过程进行了观察,并对花粉活力进行鉴定.结果显示:(1)灯盏花不育株根、茎、叶形态与正常可育植株基本相似,管状花小,花丝短,花药瘦小,无花粉粒散出或花粉无活力.(2)灯盏花在其花药发育的小孢子母细胞时期、四分体时期、小孢子时期和单核早期,由于绒毡层细胞液泡化、提前解体,不能为小孢子或花粉发育提供所需物质,导致小孢子母细胞和四分体解体,产生无花粉的花药;或小孢子和单核花粉胞内降解,形成不同形状和外壁纹饰的败育花粉.研究认为,灯盏花花药绒毡层异常是其花粉败育的主要原因.  相似文献   

5.
6.
Gynodioecy, the phenomenon of having both hermaphrodite and female (i.e. male‐sterile) individuals within the same population, is an important intermediate step in the evolution of separate sexes in flowering plants. In this study, we investigated the floral micromorphology and microsporogenesis of the gynodioecious herb Glechoma longituba from four natural populations in Korea. The floral micromorphological characters of the different sex morphs were examined and compared using scanning electron microscopy (SEM), and the ultrastructure of microspores during microsporogenesis was studied. We also examined the development of anthers and pollen grains in the three sexual morphs (i.e. hermaphrodites, females, and gynomonoecious, i.e. individuals with a mixture of female and hermaphroditic flowers) by embryological investigation. The major difference in anther development between the three phenotypes was the early disintegration of the tapetal cells in the anthers of female flowers. While mature fertile pollen grains were found in both hermaphrodite and gynomonoecious phenotypes, females did not produce any pollen grains. In addition, both fertile and sterile pollen grains in gynomonoecious phenotypes were frequently observed. The results of the present study indicate that floral micromorphological characters were not distinct between sexual morphs of G. longituba, except for the structure of the inner cell surfaces of the anther. The observed tapetum abnormalities and degeneration of pollen grains in both gynomonoecious phenotypes and females may be the consequence of inbreeding depression in hermaphrodites.  相似文献   

7.
8.
The Arabidopsis anther has a bilateral symmetry with four lobes, each consisting of four distinct layers of somatic cells from the outer to inner side: epidermis, endothecium, middle layer and tapetum. The tapetum is a layer of cells comprising the inner surface of the pollen wall. It plays an important role in anther development by providing enzymes, materials and nutrients required for pollen maturation. Genes and molecular mechanisms underlying tapetum formation and pollen wall biosynthesis have been studied in Arabidopsis. However, tapetum degeneration and anther dehiscence have not been well characterized at the molecular level. Here, we report that an Arabidopsis gene, designated reduced male fertility (RMF), regulates degeneration of tapetum and middle layer during anther development. The Arabidopsis dominant mutant rmf-1D overexpressing the RMF gene exhibited pleiotropic phenotypes, including dwarfed growth with small, dark-green leaves and low male fertility. Tapetum development and subsequent degeneration were impaired in the mutant. Accordingly, pollen maturation was disturbed, reducing the male fertility. In contrast, tapetum degeneration was somewhat accelerated in the RMF RNAi plants. The RMF gene was expressed predominantly in the anther, particularly in the pollen grains. Notably, the RMF protein contains an F-box motif and is localized to the nucleus. It physically interacts with the Arabidopsis-Skp1-like1 protein via the F-box motif. These observations indicate that the RMF gene encodes an F-box protein functioning in tapetum degeneration during anther development.  相似文献   

9.
Expression of many proteinases has been documented during anther development. Although their roles are not completely understood, their inhibition could possibly result in impairment of anther development leading to male sterility. We proposed that such an impairment of anther development can be engineered in plants resulting in male sterile plants that can be used for hybrid seed production. Here, we report that anther-specific expression of Aprotinin gene (serine proteinase inhibitor) in tobacco has resulted in male sterility. Southern analysis and zymogram analysis confirmed the integration and expression of Aprotinin gene in the anthers of the transgenic plants. Transverse sections of anthers of transgenic male sterile plants showed damaged tapetum. The pollen germination in the transgenic plants ranged between 2% and 65% that confirmed the impairment in pollen production leading to male sterility and low seed yield. Thus, inhibition of serine proteinases that are expressed during anther development has resulted in impaired pollen production and male sterility, though the exact role of these proteinases in anther development still has to be elucidated.  相似文献   

10.
11.
植物细胞核雄性不育基因研究进展   总被引:4,自引:0,他引:4  
植物雄性不育既是研究植物生殖生物学重要的植物学性状也是研究作物杂种优势利用重要的农艺性状,在遗传和分子生物学中具有重要地位。以模式植物拟南芥和水稻为主,对植物雄性不育的控制基因和相关分子机理已有众多进展,按照花药发育时期和雄性败育的表现形式可以归纳为减数分裂异常、胼胝质代谢异常、绒毡层发育异常、花粉壁发育异常、花药开裂异常,以及其它类型的雄性不育。在不育相关基因中,导致胼胝质代谢异常、绒毡层发育异常和花粉壁发育异常的基因往往表现一因多效,一个相关基因的突变会产生复合表型。关于植物雄性不育相关基因的研究表明,雄性器官和小孢子形成过程中的任何相关基因的改变,均可导致雄性不育的产生。本文总结了植物核基因雄性不育的研究进展,以期促进不同物种间雄性不育基因的比较分析,使植物雄性不育研究更加深入。  相似文献   

12.
The superior performance of F1 hybrids has a significant impact on agricultural productivity. For commercial application, the availability of an efficient system for obtaining male-sterile lines of crops is an essential prerequisite. Here we have investigated the use of RNA interference (RNAi) technology to silence a male-specific gene in the model host tobacco. TA29 is expressed exclusively in anthers at the time of microspore development. About 10 out of 13 tobacco lines transformed with a hairpin RNAi construct containing TA29 sequences were male sterile. Transgenic plants were phenotypically indistinguishable from non-transgenic plants. At the anthesis stage, pollen grains from transgenic, male-sterile plants were aborted and lysed in comparison to the round and fully developed pollen in non-transgenic plants. Microscopic analysis of anthers showed selective degradation of tapetum in transgenic plants with no microspore development. One week after self-pollination, the ovules of non-transgenic plants were double the size of those in transgenic plants, due to successful self-fertilization. Male sterile transgenic plants set seed normally, when cross-pollinated with pollen from non-transgenic plants, confirming no adverse effect on the female parts of the flower. These results show that silencing of male-specific genes by RNAi is potentially a useful tool for generating male-sterile lines for producing hybrid seed.  相似文献   

13.
14.
We have taken a mutational approach to identify genes important for male fertility in Arabidopsis thaliana and have isolated a number of nuclear male/ sterile mutants in which vegetative growth and female fertility are not altered. Here we describe detailed developmental analyses of four mutants, each of which defines a complementation group and has a distinct developmental end point. All four mutants represent premeiotic developmental lesions. In ms3, tapetum and middle layer hypertrophy result in the degeneration of microsporocytes. In ms4, microspore dyads persist for most of anther development as a result of impaired meiotic division. In ms5, degeneration occurs in all anther cells at an early stage of development. In ms15, both the tapetum and microsporocytes degenerate early in anther development. Each of these mutants had shorter filaments and a greater number of inflorescences than congenic male-fertile plants. The differences in the developmental phenotypes of these mutants, together with the non-allelic nature of the mutations indicate that four different genes important for pollen development, have been identified.  相似文献   

15.
16.
楸树(Catalpa bungei C.A.Meyer.)属紫葳科(Bignoniaceae)梓树属(Catalpa),落叶乔木,是我国特有的珍贵优质用材树种。本文用石蜡切片法对可育株和雄性不育株楸树的大、小孢子发生及雌、雄配子体发育过程进行了详细地比较观察。结果表明:可育株和不育株楸树雌蕊的发育基本相同,胚珠倒生,薄珠心,单珠被,胚囊发育为蓼型。可育株雄蕊花药四室,药隔薄壁组织发达;异型绒粘层,由药壁绒粘层和药隔绒粘层组成;花药壁表皮细胞在小孢子母细胞减数分裂前后开始径向伸长加厚,直到花药开裂并不降解,这可能与花药开裂有关;成熟花粉为四合花粉。雄性不育株花药的早期发育到次生造胞细胞时期与可育雄蕊的相同,小孢子母细胞减数分裂前绒毡层发育不充分;四分体时期,绒毡层细胞高度液泡化,细胞质稀薄,已提前降解,小孢子四分体因绒毡层结构和功能异常而不能正常发育,因此楸树雄性不育为结构型雄性不育。  相似文献   

17.

Key message

An ABC transporter gene ( OsABCG15 ) was proven to be involved in pollen development in rice. The corresponding protein was localized on the plasma membrane using subcellular localization.

Abstract

Wax, cutin, and sporopollenin are important for normal development of the anther cuticle and pollen exine, respectively. Their lipid soluble precursors, which are produced in the tapetum, are then secreted and transferred to the anther and microspore surface for polymerization. However, little is known about the mechanisms underlying the transport of these precursors. Here, we identified and characterized a member of the G subfamily of ATP-binding cassette (ABC) transporters, OsABCG15, which is required for the secretion of these lipid-soluble precursors in rice. Using map-based cloning, we found a spontaneous A-to-C transition in the fourth exon of OsABCG15 that caused an amino acid substitution of Thr-to-Pro in the predicted ATP-binding domain of the protein sequence. This osabcg15 mutant failed to produce any viable pollen and was completely male sterile. Histological analysis indicated that osabcg15 exhibited an undeveloped anther cuticle, enlarged middle layer, abnormal Ubisch body development, tapetum degeneration with a falling apart style, and collapsed pollen grains without detectable exine. OsABCG15 was expressed preferentially in the tapetum, and the fused GFP-OsABCG15 protein was localized to the plasma membrane. Our results suggested that OsABCG15 played an essential role in the formation of the rice anther cuticle and pollen exine. This role may include the secretion of the lipid precursors from the tapetum to facilitate the transfer of precursors to the surface of the anther epidermis as well as to microspores.  相似文献   

18.
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum‐specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate‐shaped compared with the three‐dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild‐type. The wild‐type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2‐Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co‐localized with the endoplasmic reticulum (ER) signal. RNA‐Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.  相似文献   

19.
Sporophyte-gametophyte interactions between anther and male gametophyte were investigated in two (fertile and sterile) clones of petunia (Petunia hybrida L.) with different reproductive strategies. Structural and functional reorganization of sporophyte tissues in the developing anther of fertile clone is closely coordinated with each of the successive stages of male gametophyte development (from meiosis to the formation of binuclear pollen) and comprises not only destruction of tapetum and three middle layers of the wall but also an activation of gas exchange and a rise in the content of sugars (sucrose, fructose, and glucose). In sterile clone, degradation of tapetum and anomalies in the development of sporogenic tissue were simultaneously observed in the prophase of meiosis. The death of microsporocytes and degeneration of tapetum were accompanied by a decrease in the level of sucrose delivered to the anther tissues and changes in the ratio between sucrose and hexoses in favor of glucose.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号