首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
To estimate the effect of modified nucleotide 37, the interaction of two yeast aminoacyl-tRNAs (Phe-tRNAPhe +Y and Phe-tRNAPhe –Y) with the A site of complex [70S · poly(U) · deacylated tRNAPhe in the P site] was assayed at 0–20°C. As comparisons with native Phe-tRNAPhe +Y showed, removal of the Y base decreased the association constant of Phe-tRNAPhe –Y and the complex by an order of magnitude at every temperature tested, and increased the enthalpy of their interaction by 23 kJ/mol. When the Y base was present in the anticodon loop of deacylated tRNAPhe bound to the P site of the 70S ribosome, twice higher affinity for the A site was observed for Phe-tRNAPhe –Y but not for Phe-tRNAPhe +Y. Thus, the modified nucleotide 3" of the Phe-tRNAPhe anticodon stabilized the codon–anticodon interaction both in the A and P sites of the 70S ribosome.  相似文献   

2.
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.  相似文献   

3.
The interaction of tRNA with 80 S ribosomes from rabbit liver was studied using biochemical as well as fluorescence techniques. Besides the canonical A and P sites, two additional sites were found which specifically bind deacylated tRNA. One of the sites is analogous to the E site of prokaryotic ribosomes, in that binding of tRNA is labile, does not depend on codon-anticodon interaction, does not protect the anticodon loop from solvent access, and requires the presence of the 3'-terminal adenosine of the tRNA. In contrast, the stability of the tRNA complex with the second site (S site) is high. tRNA binding to the S site is also codon-independent; nevertheless, the anticodon loop is shielded from solvent access. Removal of the 3'-terminal adenosine decreases the affinity of tRNA(Phe) for the S site approximately 50-fold. tRNA(Phe) is retained at the S site during translocation and through poly(Phe) synthesis. Thus, the S site does not seem to be an intermediate site for the tRNA during the elongation cycle. Rather, the tRNA bound to the S site may allosterically modulate the function of the ribosome.  相似文献   

4.
K Nagano  H Takagi  M Harel 《Biochimie》1991,73(7-8):947-960
Lim and Spirin [25] proposed a preferable conformation of the nascent peptide during the ribosomal transpeptidation. Spirin and Lim [26] excluded the possibilities of the side-by-side model proposed by Johnson et al [13] and the three-tRNA binding model (A, P and E sites) of Rheinberger and Nierhaus [3]. However, a slight conformational change at the 3' end regions of both A and P site tRNA molecules can enable the three different tRNA binding models to converge. With a modification of the angles of the ribose rings of both anticodon and mRNA this model can also be related to the model of Sundaralingam et al [19]. In this model of E coli rRNA the 3' end sequence ACCA76 or GCCA76 of P site tRNA is base-paired to UGGU810 of 23S rRNA, while the ACC75 or GCC75 of A site tRNA are base-paired to GGU1621 23S rRNA. The conformation of the A76 of A site tRNA is necessarily different from that of P site tRNA, at least during the course of the transpeptidation. The A76 of A site tRNA overlaps the binding region of puromycin. The C1400 of 16S rRNA in this model is located at a distance of 4 A from the 5' end of the anticodon of P site tRNA [14] and 17 A from the 5' end of the anticodon of A site tRNA [15]. It is also shown that a considerable but reasonable modification in the conformation of the anticodon loops could lead to accommodation of three deacylated tRNA(Phe) molecules at a time on 70S ribosome in the presence of poly(U) as observed experimentally [6]. A sterochemical explanation for the negatively-linked allosteric interactions between the A and E sites is also shown in the present model.  相似文献   

5.
R T Marconi  W E Hill 《Biochemistry》1989,28(2):893-899
A nine-base oligodeoxyribonucleotide complementary to bases 2497-2505 of 23S rRNA was hybridized to both 50S subunits and 70S ribosomes. The binding of the probe to the ribosome or ribosomal subunits was assayed by nitrocellulose filtration and by sucrose gradient centrifugation techniques. The location of the hybridization site was determined by digestion of the rRNA/cDNA heteroduplex with ribonuclease H and gel electrophoresis of the digestion products, followed by the isolation and sequencing of the smaller digestion fragment. The cDNA probe was found to interact specifically with its rRNA target site. The effects on probe hybridization to both 50S and 70S ribosomes as a result of binding deacylated tRNA(Phe) were investigated. The binding of deacylated tRNA(Phe), either with or without the addition of poly(uridylic acid), caused attenuation of probe binding to both 50S and 70S ribosomes. Probe hybridization to 23S rRNA was decreased by about 75% in both 50S subunits and 70S ribosomes. These results suggest that bases within the 2497-2505 site may participate in a deacylated tRNA/rRNA interaction.  相似文献   

6.
7.
The modified nucleotide 3′ of the tRNA anticodon is an important structural element that regulates the codon-anticodon interaction in the ribosome by stacking with codon-anticodon bases. The presence and identity (pyrimidine, purine, or modified purine) of this nucleotide significantly affects the energy of stacking in the A and P sites of the ribosome. Modification of nucleotide 37 does not contribute to stacking in the A site of the 70S ribosome, while its effect is substantial in the P site. The enthalpies of tRNA interactions with the A and P sites in the ribosome are similar and considerably lower than the enthalpy of the interactions of two tRNAs with the cognate anticodons in solution, suggesting that the ribosome contributes to the enthalpy-related portion of the free energy of tRNA binding by directly forming additional interactions with tRNA or by indirectly stabilizing the conformation of the codon-anticodon complex. In addition to stacking, tRNA binding in the A and P sites is further stabilized by interactions that involve magnesium ions. The number of ions involved in the formation of the tRNA-ribosome complex depends on the identity of tRNA nucleotide 37.  相似文献   

8.
Human placenta and Escherichia coli Phe-tRNA(Phe) and N-AcPhe-tRNA(Phe) binding to human placenta 80S ribosomes was studied at 13 mM Mg2+ and 20 degrees C in the presence of poly(U), (pU)6 or without a template. Binding properties of both tRNA species were studied. Poly(U)-programmed 80S ribosomes were able to bind charged tRNA at A and P sites simultaneously under saturating conditions resulting in effective dipeptide formation in the case of Phe-tRNA(Phe). Affinities of both forms of tRNA(Phe) to the P site were similar (about 1 x 10(7) M-1) and exceeded those to the A site. Affinity of the deacylated tRNA(Phe) to the P site was much higher (association constant > 10(10) M-1). Binding at the E site (introduced into the 80S ribosome by its 60S subunit) was specific for deacylated tRNA(Phe). The association constant of this tRNA to the E site when A and P sites were preoccupied with N-AcPhe-tRNA(Phe) was estimated as (1.7 +/- 0.1) x 10(6) M-1. In the presence of (pU)6, charged tRNA(Phe) bound loosely at the A and P sites, and the transpeptidation level exceeded the binding level due to the exchange with free tRNA from solution. Affinities of aminoacyl-tRNA to the A and P sites in the presence of (pU)6 seem to be the same and much lower than those in the case of poly(U). Without a messenger, binding of the charged tRNA(Phe) to 80S ribosomes was undetectable, although an effective transpeptidation was observed suggesting a very labile binding of the tRNA simultaneously at the A and P sites.  相似文献   

9.
Using singlet-singlet energy transfer, we have measured the distance between the anticodons of two transfer RNAs simultaneously bound to a messengerprogramed Escherichia coli 70 S ribosome. The fluorescent Y base adjacent to the anticodon of yeast tRNAYPhe serves as a donor. A proflavine (Pf) chemically substituted for the Y base in tRNAPfPhe serves as an acceptor. By exploiting the sequential binding properties of 70 S ribosomes for two deacylated tRNAs, we can fill the strong site with either tRNAYPhe or tRNAPfPhe and then the weak site with the other tRNA. In both cases donor quenching and sensitized emission of the acceptor are observed. Analysis of these results leads to an estimate for the Y-proflavine distance of 18 ± 2 Å. This distance is very short and suggests strongly that the two tRNAs are simultaneously in contact with adjacent codons of the message. Separate experiments show that binding of a tRNA to the weak site does not perturb the environment of the hypermodified base of a tRNA bound to the strong site. This supports the assignment of the strong site as the peptidyl site. It also indicates that binding of the second tRNA proceeds without a change in the anticodon structure of a pre-existing tRNA at the peptidyl site.  相似文献   

10.
The many interactions of tRNA with the ribosome are fundamental to protein synthesis. During the peptidyl transferase reaction, the acceptor ends of the aminoacyl and peptidyl tRNAs must be in close proximity to allow peptide bond formation, and their respective anticodons must base pair simultaneously with adjacent trinucleotide codons on the mRNA. The two tRNAs in this state can be arranged in two nonequivalent general configurations called the R and S orientations, many versions of which have been proposed for the geometry of tRNAs in the ribosome. Here, we report the combined use of computational analysis and tethered hydroxyl-radical probing to constrain their arrangement. We used Fe(II) tethered to the 5' end of anticodon stem-loop analogs (ASLs) of tRNA and to the 5' end of deacylated tRNA(Phe) to generate hydroxyl radicals that probe proximal positions in the backbone of adjacent tRNAs in the 70S ribosome. We inferred probe-target distances from the resulting RNA strand cleavage intensities and used these to calculate the mutual arrangement of A-site and P-site tRNAs in the ribosome, using three different structure estimation algorithms. The two tRNAs are constrained to the S configuration with an angle of about 45 degrees between the respective planes of the molecules. The terminal phosphates of 3'CCA are separated by 23 A when using the tRNA crystal conformations, and the anticodon arms of the two tRNAs are sufficiently close to interact with adjacent codons in mRNA.  相似文献   

11.
The protein environment of each nucleotide of the template codon located in the A site of the human ribosome was studied with UUCUCAA and UUUGUU derivatives containing a Phe codon (UUC and UUU, respectively) and a perfluoroarylazido group at U4, U5, or U6. The analogs were positioned in the ribosome with the use of tRNA(Phe), which is cognate to the UUC or UUU codon and directs it to the P site, bringing a modified codon in the A site with a modified nucleotide occupying position +4, +5, or +6 relative to the first nucleotide of the P-site codon. On irradiation of ribosome complexes with tRNA(Phe) and mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins to a greater extent than the rRNA. The 18S rRNA nucleotides crosslinking to the analogs were identified previously. Of the small-subunit proteins, S3 and S15 were the major targets of modification in all cases. The former was modified both in ternary complexes and in the absence of tRNA, and the latter, only in ternary complexes. The extent of crosslinking of mRNA analogs to S15 decreased when the modified nucleotide was shifted from position +4 to position +6. The results were collated with the data on ribosomal proteins located at the decoding site of the 70S ribosome, and conclusion was made that the protein environment of the A-site codon strikingly differs between bacterial and eukaryotic ribosomes.  相似文献   

12.
The effect of buffer conditions on the binding position of tRNA on the Escherichia coli 70 S ribosome have been studied by means of three-dimensional (3D) cryoelectron microscopy. Either deacylated tRNAfMet or fMet-tRNAfMet were bound to the 70 S ribosomes, which were programmed with a 46-nucleotide mRNA having AUG codon in the middle, under two different buffer conditions (conventional buffer: containing Tris and higher Mg2+ concentration [10-15 mM]; and polyamine buffer: containing Hepes, lower Mg2+ concentration [6 mM], and polyamines). Difference maps, obtained by subtracting 3D maps of naked control ribosome in the corresponding buffer from the 3D maps of tRNA.ribosome complexes, reveal the distinct locations of tRNA on the ribosome. The position of deacylated tRNAfMet depends on the buffer condition used, whereas that of fMet-tRNAfMet remains the same in both buffer conditions. The acylated tRNA binds in the classical P site, whereas deacylated tRNA binds mostly in an intermediate P/E position under the conventional buffer condition and mostly in the position corresponding to the classical P site, i. e. in the P/P state, under the polyamine buffer conditions.  相似文献   

13.
When bound to Escherichia coli ribosomes and irradiated with near-UV light, various derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at the 3' terminus form cross-links to 23 S rRNA and 50 S subunit proteins in a site-dependent manner. A and P site-bound tRNAs, whose 3' termini reside in the peptidyl transferase center, label primarily nucleotides U2506 and U2585 and protein L27. In contrast, E site-bound tRNA labels nucleotide C2422 and protein L33. The cross-linking patterns confirm the topographical separation of the peptidyl transferase center from the E site domain. The relative amounts of label incorporated into the universally conserved residues U2506 and U2585 depend on the occupancy of the A and P sites by different tRNA ligands and indicates that these nucleotides play a pivotal role in peptide transfer. In particular, the 3'-adenosine of the peptidyl-tRNA analogue, AcPhe-tRNA(Phe), remains in close contact with U2506 regardless of whether its anticodon is located in the A site or P site. Our findings, therefore, modify and extend the hybrid state model of tRNA-ribosome interaction. We show that the 3'-end of the deacylated tRNA that is formed after transpeptidation does not immediately progress to the E site but remains temporarily in the peptidyl transferase center. In addition, we demonstrate that the E site, defined by the labeling of nucleotide C2422 and protein L33, represents an intermediate state of binding that precedes the entry of deacylated tRNA into the F (final) site from which it dissociates into the cytoplasm.  相似文献   

14.
The use of some bifunctional Pt(II)-containing cross-linking reagents for investigation of structural organization of ribosomal tRNA- and mRNA-binding centres is demonstrated for various types of [70S ribosome.mRNA-tRNA] complexes. It is shown that treatment of the complexes [70S ribosome.Ac[14C]Phe-tRNA(Phe).poly(U)], [70S ribosome.3'-32pCp-tRNA(Phe).poly(U)] and [70S ribosome.f[35S]Met-tRNA(fMet).AUGU6] with Pt(II)-derivatives results in covalent attachment of tRNA to ribosome. AcPhe-tRNA(Phe) and 3'-pCp-tRNA(Phe) bound at the P site were found to be cross-linked preferentially to 30S subunit. fMet-tRNA(fMet) within the 70S initiation complex is cross-linked to both ribosome subunits approximately in the same extent, which exceeds two-fold the level of the tRNA(Phe) cross-linking. All used tRNA species were cross-linked in the comparable degree both to rRNA and proteins of both subunits in all types of the complexes studied. 32pAUGU6 cross-links exclusively to 30S subunit (to 16S RNA only) within [70S ribosome.32pAUGU6.fMet-tRNA(fMet)] complex. In the absence of fMet-tRNAfMet the level of the cross-linking is 4-fold lower.  相似文献   

15.
tRNA binding sites on the subunits of Escherichia coli ribosomes   总被引:2,自引:0,他引:2  
Programmed 30 S subunits expose only one binding site, to which the different classes of tRNA (deacylated tRNAPhe, Phe-tRNAPhe, and N-acetylphenylalanyl (AcPhe)-tRNAPhe) bind with about the same affinity. Elongation factor Tu within the ternary complex does not contribute to the binding of Phe-tRNA. Binding of acylated or deacylated tRNA to 30 S depends on the cognate codon; nonprogrammed 30 S subunits do not bind tRNA to any significant extent. The existence of only one binding site/30 S subunit (and not, for example, two sites in 50% of the subunits) could be shown with Phe-tRNAPhe as well as deacylated tRNAPhe pursuing different strategies. Upon 50 S association the 30 S-bound tRNA appears in the P site (except the ternary complex which is found at the A site). Inhibition experiments with tetracycline demonstrated that the 30 S inhibition pattern is identical to that of the P site but differs from that of the A site of 70 S ribosomes. In contrast to 30 S subunits the 50 S subunit exclusively binds up to 0.2 and 0.4 molecules of deacylated tRNAPhe/50 S subunit in the absence and presence of poly(U), respectively, but neither Phe-tRNA nor AcPhe-tRNA. Noncognate poly(A) did not stimulate the binding indicating codon-anticodon interaction at the 50 S site. The exclusive binding of deacylated tRNA and its dependence on the presence of cognate mRNA is reminiscent of the characteristics of the E site on 70 S ribosomes. 30 and 50 S subunits in one test tube expose one binding site more than the sum of binding capacities of the individual subunits. The results suggest that the small subunit contains the prospective P site and the large subunit the prospective E site, thus implying that the A site is generated upon 30 S-50 S association.  相似文献   

16.
By utilizing an enzymatically reconstructed tRNA variant containing an altered anticodon sequence, we have examined the different biochemical behavior of translation between the Watson-Crick type and the wobble type base pair interactions at the first anticodon position. We have found that the Watson-Crick type base pair has an advantage in translation in contrast to the wobble type base pair by comparing the efficiency of transpeptidation of native tRNA(Phe) (anticodon; GmAA) with its variant tRNA (anticodon; AAA) in the poly(U)-programmed ribosome system. Thomas et al. [Proc. Natl. Acad. Sci. U.S. (1988) 85, 4242-4246] showed that the wobble codon at the ribosomal A-site accepted its cognate tRNA less efficiently than the Watson-Crick base pairing codon. We report here that the wobble interaction at the ribosomal P-site also affected the rate of translation. This variable translational rate may be a mechanism of gene regulation through preferential codon usage.  相似文献   

17.
Topography of the E site on the Escherichia coli ribosome.   总被引:6,自引:2,他引:4       下载免费PDF全文
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   

18.
V I Baranov  L A Ryabova 《Biochimie》1988,70(2):259-265
The release of deacylated tRNA from the ribosome as a result of translocation has been studied. Translating ribosomes prepared with poly(U)-S-S-Sepharose columns have been used. It has been shown that deacylated tRNA released from the ribosomal P site as a result of translocation rebinds with the vacated A site. Consistent with the known properties of the A site of the ribosome, this interaction is reversible, Mg2+-dependent, codon-specific and is inhibited by the antibiotic tetracycline. It has been concluded that the proposed three-site model of the ribosomal elongation cycle (Rheinberger and Nierhaus (1983) Proc. Natl. Acad. Sci. USA 80, 4213-4217) is not sound: the experimentally observed 'retention' of the deacylated tRNA on the ribosome after translocation can be explained by a codon-dependent rebinding to the A site, rather than by its transition to the 'E site', i.e., in terms of the classical two-site model.  相似文献   

19.
A ribosome stalled on a truncated mRNA in the eubacterial cell can be rescued by tmRNA via a process called trans-translation. We demonstrate here that release of truncated mRNAs from stalled ribosomes accelerates significantly already after trans-peptidation following tmRNA binding to the ribosome. However, rapid release of truncated mRNA requires EF-G-dependent translocation of peptidyl-tmRNA from the A to the P site of the ribosome. We show also that the rate of mRNA release before and after peptidyl-tmRNA translocation correlates well with the rate of dissociation of deacylated tRNA, indicating that mRNA is retained on the ribosome mainly through codon:anticodon interaction with tRNA. The rate of mRNA release is reduced for mRNAs with strong Shine-Dalgarno (SD)-like sequences in the vicinity of the truncation site as well as for mRNAs with long 3' extensions downstream from the P-site codon. The reduced rate of release in the former case was due to a persisting SD-anti SD interaction between mRNA and the ribosome.  相似文献   

20.
We have previously proposed a three-site model for the elongation cycle. The model is characterized by the presence of two tRNAs on the ribosome before and after translocation. We have already shown a first consequence of the model, namely that the translocation reaction is not coupled with a release of deacylated tRNA. Here we demonstrate the following conclusions. Occupation of the A site triggers the tRNA release from the E site, i.e. the A site occupation induces a drastic decrease in the affinity of the E site for deacylated tRNA. In the concentration range of deacylated tRNA in which a ribosome binds a second tRNA in addition to that one already present at the P site the deacylated tRNA does not compete for one and the same binding site with an A site ligand (AcPhe-tRNA) at 37 degrees C. It follows that the second deacylated tRNA binds to a site, the E site, which is physically distinct from the A site. When the ribosome binds a deacylated tRNA at the E site (in addition to a tRNA at the P site), the A site cannot be occupied by AcPhe-tRNA at 0 degree C and only poorly by the ternary complex elongation factor Tu . Phe-tRNA . guanyl-5'-yl imidodiphosphate. At 37 degrees C a significant A site binding is observed, with a corresponding tRNA release from the E site. In contrast, if the E site is free and only the P site occupied, the A site can bind significant amounts of charged tRNA already at 0 degree C. It follows that an occupied E site induces a low-affinity state of the A site. Thus, the ribosome always contains two high-affinity binding sites, which are A and P sites before and P and E sites after translocation. A and E sites are allosterically linked in a bidirectional manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号