共查询到20条相似文献,搜索用时 0 毫秒
1.
Design of purine nucleoside phosphorylase inhibitors 总被引:2,自引:0,他引:2
Purine nucleoside phosphorylase inhibitors hold promise as specific immunosuppressive, anti-T cell leukemic, and antiuricopoietic agents. The best inhibitors available that are biologically active have Ki values from 10(-6) to 10(-7) M and fall into two categories: noncleavable nucleosides preferably iodinated at the C-5' position and C-8-substituted guanine or acycloguanosines. More potent inhibition is shown by phosphorylated acyclonucleosides that function as multisubstrate analogs, but these compounds are excluded from cells. The X-ray analysis of the human erythrocytic enzyme is beginning to reveal the nature of the active site and to explain the structure-activity relationships that have been established with analog substrates and inhibitors. 相似文献
2.
L. H. Pogosian L. S. Nersesova M. G. Gazariants Z. S. Mkrtchian J. I. Akopian 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2011,5(1):60-64
Purine nucleoside phosphorylase (PNP) catalyzes reversible phosphorolysis of purine deoxy- and ribonucleosides with formation
(d)Rib-1-P and corresponding bases. PNP plays a leading role in the cell metabolism of nucleosides and nucleotides, as well
as in maintaining the immune status of an organism. The major aim of the majority of studies on the PNP is the detection of
highly effective inhibitors of this enzyme, derivatives of purine nucleosides used in medicine as immunosuppressors, which
are essential for creating selective T-cell immunodeficiency in a human body for organ and tissue transplantation. The present
work is devoted to the study of the effects of some synthetic derivatives of purine nucleosides on activity of highly purified
PNP from rabbit spleen and also from human healthy and tumor tissues of lung and kidneys. Purine nucleoside analogues modified
at various positions of both the heterocyclic base and carbohydrate residues have been investigated. Several compounds, including
8-mercapto-acyclovir, 8-bromo-9-(3,4-hydroxybutyl)guanine, which demonstrated potent PNP inhibition, could be offered for
subsequent study as immunosuppressors during organ and tissue transplantation. 相似文献
3.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM). 相似文献
4.
T A Krenitsky J V Tuttle W H Miller A R Moorman G F Orr L Beauchamp 《The Journal of biological chemistry》1990,265(6):3066-3069
The diphosphate of the antiherpetic agent acyclovir [9-[(2-hydroxyethoxy)methyl]guanine] has been shown to inhibit purine nucleoside phosphorylase with unique potency (Tuttle, J. V., and Krenitsky, T. A. (1984) J. Biol. Chem. 259, 4065-4069). A major factor contributing to the superior inhibition by this diphosphate over the corresponding mono- and triphosphates is revealed here. Homologues of acyclovir mono- and diphosphate that extend the ethoxy moiety by one to four methylene groups were synthesized. These homologues were evaluated for their ability to inhibit human purine nucleoside phosphorylase. Within the diphosphate series, the Ki values increased progressively with increasing chain length. With the monophosphates, the Ki values reached a minimum with the homologue containing a pentoxy moiety. A plot of chain length versus Ki values for both mono- and diphosphates showed that both series had similar optimal distances between the aminal carbon and the terminal oxygen anion. Monophosphates with optimal positioning were somewhat less potent than diphosphates with similar positioning. Nevertheless, it was clear that a major factor in determining potency of inhibition was the distance of the terminal phosphate from the guanine moiety. 相似文献
5.
Adenine as substrate for purine nucleoside phosphorylase 总被引:11,自引:0,他引:11
6.
Paola Lucarelli Rosa M. Corbo R. Scacchi R. Palmarino Erminia Carapella-De Luca 《Human genetics》1979,50(1):71-73
Summary A brief genetic report is given on a family with a child affected by nucleoside phosphorylase deficiency. Our observations confirm the genetic heterogeneity of this enzyme deficiency which is inherited as a mendelian autosomal trait. 相似文献
7.
8.
The activity of purine nucleoside phosphorylase was determined at various levels of the human neuraxis in 5 brains and 2 spinal cords, using the method of Lewis and Glantz. The determination is based on the decrease in optical density of guanosine at 252 nm and 40 degrees C, with conversion of this compound to guanine and ribose-1-phosphate by phosphorolysis. Our studies show a fairly uniform distribution of the enzyme in the human CNS, with an average value of 209 mumol of guanosine transformed/min/g of wet tissue. The lowest values are found in the spinal cord and cerebellar grey matter, and highest amounts in the occipital grey and white substance. 相似文献
9.
Treatment of purine nucleoside phosphorylase (EC 2.4.2.1), from either calf spleen or human erythrocytes, with 2,3-butanedione in borate buffer or with phenylglyoxal in Tris buffer markedly decreased the enzyme activity. At pH 8.0 in 60 min, 95% of the catalytic activity was destroyed upon treatment with 33 mM phenylglyoxal and 62% of the activity was lost with 33 mm 2,3-butanedione. Inorganic phosphate, ribose-1-phosphate, arsenate, and inosine when added prior to chemical modification all afforded protection from inactivation. No apparent decrease in enzyme catalytic activity was observed upon treatment with maleic anhydride, a lysine-specific reagent. Inactivation of electrophoretically homogeneous calf-spleen purine nucleoside phosphorylase by butanedione was accompanied by loss of arginine residues and of no other amino acid residues. A statistical analysis of the inactivation data vis-à-vis the fraction of arginines modified suggested that one essential arginine residue was being modified. 相似文献
10.
Irving H. Fox Jan Kaminska N. Lawrence Edwards Erwin Gelfand Kenneth C. Rich William N. Arnold 《Biochemical genetics》1980,18(3-4):221-234
Purine and pyrimidine metabolism was compared in erythrocytes from three patients from two families with purine nucleoside phosphorylase deficiency and T-cell immunodeficiency, one heterozygote subject for this enzyme deficiency, one patient with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase, and two normal subjects. The erythrocytes from the heterozygote subject were indistinguishable from the normal erythrocytes. The purine nucleoside phosphorylase deficient erythrocytes had a block in the conversion of inosine to hypoxanthine. The erythrocytes with 0.07% of normal purine nucleoside phosphorylase activity resembled erythrocytes with hypoxanthine-guanine phosphoribosyltransferase deficiency by having an elevated intracellular concentration of PP-ribose-P, increased synthesis of PP-ribose-P, and an elevated rate of carbon dioxide release from orotic acid during its conversion to UMP. Two hypotheses to account for the associated immunodeficiency—that the enzyme deficiency leads to a block of PP-ribose-P synthesis or inhibition of pyrimidine synthesis—could not be supported by observations in erythrocytes from both enzyme-deficient families.This work was supported by U.S. Public Health Service Grant AM 19674 and 5 M01 RR 42 and by a Grant-In-Aid from American Heart Association (77-849) and with funds contributed in part by the Michigan Heart Association. N.L.E. is a Rheumatology Fellow from the Rackman Arthritis Research Unit supported by Training Grant USPHS AM 07080. 相似文献
11.
We have developed a new assay for purine nucleoside phosphorylase which is based on the release of tritium when [2-3H]inosine is used as the substrate and the reaction is coupled with xanthine oxidase. After the reaction is terminated, residual [2-3H]inosine is adsorbed on charcoal and the supernatant solution is assayed for radioactivity by liquid scintillation spectrometry. The new method gave results indistinguishable from those obtained by spectrophotometric determination of uric acid produced by the phosphorylase-xanthine oxidase-coupled reaction or by radioassay of chromatographically isolated [8-14C]hypoxanthine when [8-14C]inosine was used as substrate. The new method is faster than those involving chromatographic isolation of products. In comparison with spectrophotometric methods, it not only requires less manual time, but it also has the advantage that it can be used to study inhibitors whose ultraviolet absorption might interfere with spectrophotometric determination of uric acid. 相似文献
12.
13.
Canduri F Fadel V Basso LA Palma MS Santos DS de Azevedo WF 《Biochemical and biophysical research communications》2005,327(3):646-649
Human purine nucleoside phosphorylase has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Recently, several structures of human PNP have been reported, which allowed redefinition of the active site and understanding of the structural basis for inhibition of PNP by acyclovir and immucillin-H. Based on previously solved human PNP structures, we proposed here a new catalytic mechanism for human PNP, which is supported by crystallographic studies and explains previously determined kinetic data. 相似文献
14.
15.
Purine nucleoside phosphorylase can be expressed in Escherichia coli and the intact cells can be used as a catalyst for the biosynthesis of nucleosides. The purine nucleoside phosphorylases from E. coli (EcPNP) and Pseudoalteromonas sp. XM2107 (PsPNP) have been purified. In order to improve the catalytic efficiency, the model of three-dimensional structure of PsPNP was constructed, and then 9 active/binding-site mutants were constructed by one-step site-directed mutagenesis and characterized by steady-state kinetics. Double mutations exhibited the largest change of catalytic activity. The T90R:T156S mutant revealed 1000 fold enhancements in k(cat)/K(m) for inosine phosphorolysis. However, the T90A:T156A mutant revealed 500 fold reduction in catalytic activity when compared with wild-type one. These results in combination with the predicted locations of Thr90 and Thr156 side chains by homology modeling suggested that: (i) a complete hydrophobic pocket played an important role in the catalytic function of PsPNP; (ii) a potential transition state structure was present in hydrogen bond between the carboxyl groups of Thr90 in the phosphate binding site. Therefore, the application of site-directed mutagenesis will be benefit to further improve catalytic efficiency of PsPNP during the enzymatic synthesis of antivirus drug ribavirin. 相似文献
16.
The binding of guanine to calf spleen purine nucleoside phosphorylase at 20 degrees C, in 20 mM Hepes-NaOH buffer, pH 7.0, at several ionic strength between 5 and 150 mM was investigated using a stopped-flow spectrofluorimeter. The kinetic transients registered after mixing a protein solution with ligand solutions of different concentrations were simultaneously fitted by several association reaction models using nonlinear least-squares procedure based on numerical integration of the chemical kinetic equations appropriate for given model. It is concluded that binding of a guanine molecule by each of the binding sites is a two-step process and that symmetrical trimeric calf spleen purine nucleoside phosphorylase represents a system of (identical) interacting binding sites. The interaction is visible through relations between the rate constants and non-additivity of changes in "molar" fluorescence for different forms of PNP-guanine complexes. It is also probable that electrostatic effects in guanine binding are weak, which indicates that it is the neutral form of the ligand which is bound and dissociated by PNP molecule. 相似文献
17.
Human erythrocytic purine nucleoside phosphorylase: reaction with sugar-modified nucleoside substrates 总被引:5,自引:0,他引:5
The kinetic parameters (Km and Vmax) of sugar-modified analogues of inosine and guanosine have been determined with human erythrocytic purine nucleoside phosphorylase (PNP). Steric alterations at the 2' and 3' positions greatly lessened or abolished substrate activity. However, the 5'-deoxy- and 2',5'-dideoxy-beta-D-ribofuranosyl and the alpha-L-lyxosyl analogues were good substrates, indicating that the 5'-hydroxyl and the orientation of the 5'-hydroxy-methyl group are not important for binding. The sugar phosphate analogue, 5-deoxyribose 1-phosphate, was synthesized from 5'-deoxyinosine with immobilized PNP, and its presence was verified by using it in the enzymic synthesis of 5'-deoxyguanosine. The adenosine versions of the 5'-modified analogues were also found to react with adenosine deaminase, albeit at less than 1% of Vmax. 相似文献
18.
Fernando Berton Zanchi Rafael Andrade Caceres Rodrigo Guerino Stabeli Walter Filgueira de Azevedo Jr. 《Journal of molecular modeling》2010,16(3):543-550
Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1) is an enzyme that catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is involved in purine-salvage pathway and has been proposed as a promising target for design and development of antimalarial and antibacterial drugs. Recent elucidation of the three-dimensional structure of PNP by X-ray protein crystallography left open the possibility of structure-based virtual screening initiatives in combination with molecular dynamics simulations focused on identification of potential new antimalarial drugs. Most of the previously published molecular dynamics simulations of PNP were carried out on human PNP, a trimeric PNP. The present article describes for the first time molecular dynamics simulations of hexameric PNP from Plasmodium falciparum (PfPNP). Two systems were simulated in the present work, PfPNP in ligand free form, and in complex with immucillin and sulfate. Based on the dynamical behavior of both systems the main results related to structural stability and protein-drug interactions are discussed. 相似文献
19.
20.
Tahirov TH Inagaki E Ohshima N Kitao T Kuroishi C Ukita Y Takio K Kobayashi M Kuramitsu S Yokoyama S Miyano M 《Journal of molecular biology》2004,337(5):1149-1160
The purine nucleoside phosphorylase from Thermus thermophilus crystallized in space group P4(3)2(1)2 with the unit cell dimensions a = 131.9 A and c = 169.9 A and one biologically active hexamer in the asymmetric unit. The structure was solved by the molecular replacement method and refined at a 1.9A resolution to an r(free) value of 20.8%. The crystals of the binary complex with sulfate ion and ternary complexes with sulfate and adenosine or guanosine were also prepared and their crystal structures were refined at 2.1A, 2.4A and 2.4A, respectively. The overall structure of the T.thermophilus enzyme is similar to the structures of hexameric enzymes from Escherichia coli and Sulfolobus solfataricus, but significant differences are observed in the purine base recognition site. A base recognizing aspartic acid, which is conserved among the hexameric purine nucleoside phosphorylases, is Asn204 in the T.thermophilus enzyme, which is reminiscent of the base recognizing asparagine in trimeric purine nucleoside phosphorylases. Isothermal titration calorimetry measurements indicate that both adenosine and guanosine bind the enzyme with nearly similar affinity. However, the functional assays show that as in trimeric PNPs, only the guanosine is a true substrate of the T.thermophilus enzyme. In the case of adenosine recognition, the Asn204 forms hydrogen bonds with N6 and N7 of the base. While in the case of guanosine recognition, the Asn204 is slightly shifted together with the beta(9)alpha(7) loop and predisposed to hydrogen bond formation with O6 of the base in the transition state. The obtained experimental data suggest that the catalytic properties of the T.thermophilus enzyme are reminiscent of the trimeric rather than hexameric purine nucleoside phosphorylases. 相似文献