首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic mRNA produces more than 40 unique viral mRNA species, of which more than half remain incompletely spliced within an HIV-1-infected cell. Regulation of splicing at HIV-1 3' splice sites (3'ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation of splicing occurs through binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3'ss A2, which produces vpr mRNA and promotes inclusion of HIV-1 exon 3, is repressed by the hnRNP A/B-dependent exonic splicing silencer ESSV. Here we show that ESSV activity downstream of 3'ss A2 is localized to a 16-nucleotide element within HIV-1 exon 3. HIV-1 replication was reduced by 95% when ESSV was inactivated by mutagenesis. Reduced replication was concomitant with increased inclusion of exon 3 within spliced viral mRNA and decreased accumulation of unspliced viral mRNA, resulting in decreased cell-associated p55 Gag. Prolonged culture of ESSV mutant viruses resulted in two independent second-site reversions disrupting the splice sites that define exon 3, 3'ss A2 and 5' splice site D3. Either of these changes restored both HIV-1 replication and regulated viral splicing. Therefore, inhibition of HIV-1 3'ss A2 splicing is necessary for HIV-1 replication.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号