首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
En route to maturing as T cell receptor (TCR) alphabeta-expressing cells, the development of thymocytes is contingent on expression of a pre-TCR complex comprising a TCRbeta chain paired with a surrogate TCRalpha chain, pre-Talpha (pTalpha). The pre-TCR has been proposed to promote cell survival, proliferation, differentiation, and lineage commitment. However, the precise molecular mechanisms governing this variety of effects remain elusive. Here, we present a cellular system designed to biochemically dissect signals elicited upon pre-TCR expression. Using the T cell line 4G4 stably transfected with one of the two known pTalpha isoforms or selective pTalpha deletion mutants and TCRbeta, we were able to observe that expression of a functional pre-TCR complex is sufficient to control the levels of surface Fas protein, the stimulation of mitogen-activated and stress-regulated kinases, and the activation status of the p53 antioncogene. We demonstrate that this regulation has a major impact on the expression of important regulators of apoptosis, such as Bcl-2 family members, and the cell cycle, such as p21(WAF). Furthermore, we show here that cells expressing a functional pre-TCR are more resistant to different types of DNA damage-induced apoptosis and that these effects are contingent on an intact cytoplasmic tail of pTalpha. We finally propose that the presence of a functional pre-TCR complex triggers many intracellular pathways capable of driving and ensuring thymocyte survival in the presence of DNA damage.  相似文献   

2.
3.
Maturation to the CD4+8+ double-positive (DP) stage of thymocyte development is restricted to cells that have passed TCRbeta selection, an important checkpoint at which immature CD4-8- double-negative (DN) cells that express TCRbeta polypeptide chains are selected for further maturation. The generation of DP thymocytes following TCRbeta selection is dependent on cellular survival, differentiation, and proliferation, and the entire process appears to be mediated by the pre-TCR/CD3 complex. In this study, we investigate the signaling requirements for TCRbeta selection using mice single deficient and double deficient for CD3zeta/eta and/or p56lck. While the numbers of DP cells are strongly reduced in the single-deficient mice, a further drastic reduction in the generation of DP thymocytes is seen in the double-deficient mice. The poor generation of DP cells in the mutant mice is primarily due to an impaired ability of CD25+ DN thymocytes to proliferate following expression of a TCRbeta-chain. Nevertheless, the residual DP cells in all mutant mice are strictly selected for expression of TCRbeta polypeptide chains. DN thymocytes of mutant mice expressed TCRbeta and CD3epsilon at the cell surface and contained mRNA for pre-Talpha, but not for clonotypic TCRalpha-chains, together suggesting that TCRbeta selection is mediated by pre-TCR signaling in all cases. The data suggest differential requirements of pre-TCR signaling for cell survival on the one hand, and for the proliferative burst associated with TCRbeta selection on the other.  相似文献   

4.
5.
6.
7.
8.
Engel I  Murre C 《The EMBO journal》2004,23(1):202-211
E2A proteins regulate multiple stages of thymocyte development and suppress T-cell lymphoma. The activity of E2A proteins throughout thymocyte development is modulated by signals emanating from the pre-TCR and TCR. Here we demonstrate that E2A is required for the complete arrest in both differentiation and proliferation observed in thymocytes with defects in proteins that mediate pre-TCR signaling, including LAT, Lck and Fyn. We show that E2A proteins are required to prevent the accumulation of TCRbeta negative cells beyond the pre-TCR checkpoint. E2A-deficient thymocytes also exhibit abnormal cell-cycle progression prior to pre-TCR expression. Furthermore, we demonstrate that E47 can act in concert with Bcl-2 to induce cell-cycle arrest in vitro. These observations indicate that E2A proteins function during early thymocyte development to block cell-cycle progression prior to the expression of TCRbeta. In addition, these data provide further insight into how deficiencies in E2A lead to T lymphoma.  相似文献   

9.
CD3gamma and CD3delta are the most closely related CD3 components, both of which participate in the TCRalphabeta-CD3 complex expressed on mature T cells. Interestingly, however, CD3delta does not appear to participate functionally in the pre-T-cell receptor (TCR) complex that is expressed on immature T cells: disruption of CD3delta gene expression has no effect on the developmental steps controlled by the pre-TCR. Here we report that in contrast with CD3delta, CD3gamma is an essential component of the pre-TCR. We generated mice selectively lacking expression of CD3gamma, in which expression of CD3delta, CD3epsilon, CD3zeta, pTalpha and TCRbeta remained undisturbed. Thus, all components for composing a pre-TCR are available, with the exception of CD3gamma. Nevertheless, T-cell development is severely inhibited in CD3gamma-deficient mice. The number of cells in the thymus is reduced to <1% of that in normal mice, and the large majority of thymocytes lack CD4 and CD8 and are arrested at the CD44-CD25+ double negative (DN) stage of development. Peripheral lymphoid organs are also practically devoid of T cells, with absolute numbers of peripheral T cells reduced to only 2-5% of those in normal mice. Both TCRalphabeta and TCRgammadelta lineages fail to develop effectively in CD3gamma-deficient mice, although absence of CD3gamma has no effect on gene rearrangements of the TCRbeta, delta and gamma loci. Furthermore, absence of CD3gamma results in a severe reduction in the level of TCR and CD3epsilon expression at the cell surface of thymocytes and peripheral T cells. The defect in the DN to double positive transition in mice lacking CD3gamma can be overcome by anti-CD3epsilon-mediated cross-linking. CD3gamma is thus essential for pre-TCR function.  相似文献   

10.
TCRbeta expression in CD4(-)CD8(-) double-negative (DN) thymocytes induces signaling pathways that promote survival and proliferation, as well as differentiation into CD4(+)CD8(+) double-positive thymocytes. The signaling pathways that regulate survival, proliferation, and differentiation remain unclear. We used Gads-deficient mice to investigate the signaling pathways that regulate these cell fates. During this investigation, we focused on TCRbeta(+) DN thymocytes and found that there are at least three functionally distinct subsets of TCRbeta(+) DN thymocytes: TCRbeta(+) DN3E, TCRbeta(+) DN3L, and TCRbeta(+) DN4. Survival and proliferation of TCRbeta(+) DN3E were independent of Gads, but survival and proliferation of TCRbeta(+) DN3L cells were Gads dependent. Likewise, expression of Bcl-2 in TCRbeta(+) DN3E cells was Gads independent, but Gads was necessary for Bcl-2 expression in TCRbeta(+) DN3L cells. Bcl-2 expression was not dependent on Gads in TCRbeta(+) DN4 cells, but proliferation of TCRbeta(+) DN4 cells was Gads dependent. Gads was not required for the differentiation of DN thymocytes into DP thymocytes. In fact, Gads(-/-) DN3E cells differentiated into DP thymocytes more readily than wild-type cells. We conclude that signaling pathways required to initiate TCRbeta-induced survival and proliferation are distinct from the pathways that maintain survival and proliferation. Furthermore, signaling pathways that promote survival and proliferation may slow differentiation.  相似文献   

11.
In this Opinion article, I address the role of the pre-B-cell receptor (pre-BCR) in the development of antigen-specific B cells in terms of immunoglobulin heavy chain (IgH) variable-region repertoire selection, precursor B-cell differentiation and proliferation, and IgH allelic exclusion. Comparisons with the role of the pre-T-cell receptor (pre-TCR) in T-cell development raise provocative questions. Why do B- and T-cell lineages both use a surrogate chain - the surrogate light chain and the pre-TCR alpha-chain, respectively - as a step to develop their repertoires of antigen-recognizing cells? What are the functions of the pre-BCR and pre-TCR in lymphocyte differentiation and antigen-receptor allelic exclusion? This article, together with the accompanying article by Harald von Boehmer, hopes to answer some of these questions.  相似文献   

12.
13.
T cell development occurs in the thymus and is critically dependent on productive TCRβ rearrangement and pre-TCR expression in DN3 cells. The requirement for pre-TCR expression results in the arrest of thymocytes at the DN3 stage (β checkpoint), which is uniquely permissive for V-DJβ recombination; only cells expressing pre-TCR survive and develop beyond the DN3 stage. In addition, the requirement for TCRβ rearrangement and pre-TCR expression enforces suppression of TCRβ rearrangement on a second allele, allelic exclusion, thus ensuring that each T cell expresses only a single TCRβ product. However, it is not known whether pre-TCR expression is essential for allelic exclusion or alternatively if allelic exclusion is enforced by developmental changes that can occur in the absence of pre-TCR. We asked if thymocytes that were differentiated without pre-TCR expression, and therefore without pause at the β checkpoint, would suppress all V-DJβ rearrangement. We previously reported that premature CD28 signaling in murine CD4(-)CD8(-) (DN) thymocytes supports differentiation of CD4(+)CD8(+) (DP) cells in the absence of pre-TCR expression. The present study uses this model to define requirements for TCRβ rearrangement and allelic exclusion. We demonstrate that if cells exit the DN3 developmental stage before TCRβ rearrangement occurs, V-DJβ rearrangement never occurs, even in DP cells that are permissive for D-Jβ and TCRα rearrangement. These results demonstrate that pre-TCR expression is not essential for thymic differentiation to DP cells or for V-DJβ suppression. However, the requirement for pre-TCR signals and the exclusion of alternative stimuli such as CD28 enforce a developmental "pause" in early DN3 cells that is essential for productive TCRβ rearrangement to occur.  相似文献   

14.
During alphabeta T cell development, CD4(-)CD8(-) thymocytes first express pre-TCR (pTalpha/TCR-beta) before their differentiation to the CD4(+)CD8(+) stage. Positive selection of self-tolerant T cells is then determined by the alphabeta TCR expressed on CD4(+)CD8(+) thymocytes. Conceivably, an overlap in surface expression of these two receptors would interfere with the delicate balance of thymic selection. Therefore, a mechanism ensuring the sequential expression of pre-TCR and TCR must function during thymocyte development. In support of this notion, we demonstrate that expression of TCR-alpha by immature thymocytes terminates the surface expression of pre-TCR. Our results reveal that expression of TCR-alpha precludes the formation of pTalpha/TCR-beta dimers within the endoplasmic reticulum, leading to the displacement of pre-TCR from the cell surface. These findings illustrate a novel posttranslational mechanism for the regulation of pre-TCR expression, which may ensure that alphabeta TCR expression on thymocytes undergoing selection is not compromised by the expression of pre-TCR.  相似文献   

15.
16.
17.
BACKGROUND: The development of immature thymocytes is regulated by the pre-T-cell receptor (pre-TCR). The pre-TCR is involved in several developmental processes including rescuing cells from programmed cell death, allelic exclusion and alphabeta versus gammadelta T-cell lineage commitment. A major issue is how the pre-TCR functions to integrate these processes in developing thymocytes. RESULTS: We have used a sensitive immunofluorescence technique to reveal the surface-expression profile of the pre-TCR on immature thymocyte subsets. We show that early pre-T cells (CD25(+)CD44(-)) can be subdivided on the basis of the level of surface pre-TCR expression. Detectable surface pre-TCR expression identified a rapidly cycling population of early pre-T cells which had successfully undergone beta-selection and been rescued from programmed cell death. Late pre-T cells (CD25(-)CD44(-)), which had traversed the beta-selection checkpoint, expressed surprisingly heterogeneous surface levels of the pre-TCR: high levels of surface pre-TCR expression were associated with commitment to the alphabeta T-cell lineage, whereas late pre-T cells with lower levels of surface pre-TCR could develop along both the alphabeta or gammadelta T-cell lineages. CONCLUSIONS: These data demonstrate that the surface expression of the pre-TCR can be used to reveal newly identified stages of T-cell development and to provide insights into alphabeta T-cell lineage commitment. They show that, although pre-TCR expression does not act as a developmental switch per se, its level of surface expression on late pre-T cells predicts their developmental potential.  相似文献   

18.
19.
Productive rearrangement of the T-cell receptor (TCR) beta gene and signalling through the pre-TCR-CD3 complex are required for survival, proliferation and differentiation of T-cell progenitors (pro-T cells). Here we identify a role for death receptor signalling in early T-cell development using a dominant-negative mutant of the death receptor signal transducer FADD/MORT1 (FADD-DN). In rag-1(-/-) thymocytes, which are defective in antigen receptor gene rearrangement, FADD-DN bypassed the requirement for pre-TCR signalling, promoting pro-T-cell survival and differentiation to the more mature pre-T stage. Surprisingly, differentiation was not accompanied by the proliferation that occurs normally during transition to the pre-T stage. Consistent with a role for FADD/MORT1 in this cell division, FADD-DN rag-1(-/-) pro-T cells failed to proliferate in response to CD3epsilon ligation. Concomitant signalling through the pre-TCR and death receptors appears to trigger pro-T cell survival, proliferation and differentiation, whereas death receptor signalling in thymocytes that lack a pre-TCR induces apoptosis. Later in life all FADD-DN rag-1(-/-) mice developed thymic lymphoma, indicating that FADD/MORT1 can act as a tumour suppressor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号