首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between cells and the extracellular matrix (ECM) play essential roles in modulating cell behavior during development and disease. The myocardial ECM is composed predominantly of interstitial collagen type I and type III. The composition, organization, and accumulation of these collagens are altered concurrent with cardiovascular development and disease. Changes in these parameters are thought to play significant roles in myocardial function. While a number of studies have examined how changes in the ECM affect myocardial function as a whole, much less is known regarding the response at the cellular level to changes in the collagenous ECM. Experiments were carried out to determine the effects of alterations in collagen density and ECM stiffness on the behavior of isolated heart fibroblasts. In vitro bioassays were performed to measure the effects of changes in collagen concentration (0.75-1.25 mg/ml) on adhesion, migration, spreading, and gene expression by heart fibroblasts. Increased density of collagen in 3-dimensional gels resulted in more efficient adhesion, spreading, and migration by heart fibroblasts. These experiments indicated that the density of the collagen matrix has a significant impact on fibroblast function. These studies begin to elucidate the effects of ECM density at the cellular level in the myocardium.  相似文献   

2.
The extracellular matrix plays a critical role in the development and maintenance of the vertebrate heart. Changes in the accumulation, composition, or organization of the extracellular matrix are known to deleteriously affect heart function. Mast cells are thought to stimulate collagen expression and fibroblast proliferation accompanying fibrosis in some organs; however, the effects of mast cells on the heart interstitium are largely unexplored. The present studies were carried out to determine the effects of mast cells on isolated heart fibroblasts. Several in vitro assays were used including collagen gel contraction to examine the effects of mast cells on the function of isolated fibroblasts. Neonatal heart fibroblasts were cultured either with mast cells, mast cell-conditioned medium, or mast cell extracts, and their ability to contract collagen gels measured. Results from these experiments indicated that mast cells inhibit heart fibroblast migration and contraction of 3-dimensional collagen gels. Further experiments indicated that incubation of neonatal heart fibroblasts with extracts of mast cells altered the expression of collagen, matrix metalloproteases, and matrix receptors of the integrin family. These studies suggest that mast cells play an important role in the regulation of the cardiac interstitial matrix. Further studies are warranted to determine the mechanisms whereby mast cells modulate fibroblast activity.  相似文献   

3.
Cellular cardiomyoplasty has been proposed as a promising therapeutic strategy for chronic heart failure. Previous studies focused on structural changes in cardiomyocytes to explain the potential benefits for contractile function. However, limited information is available about the cardiac matrix remodeling following cell transplantation in dilated cardiomyopathy (DCM). Here, we established a new animal model of intracoronary bone marrow mononuclear cells (BMMNCs) transplantation to explore extracellular matrix remodeling in adriamycin-induced cardiomyopathic rabbits. In vivo studies demonstrated that BMMNCs transplantation can dramatically delay the progress of collagen metabolism and decrease myocardial collagen volume fraction. The beneficial effects were mediated by attenuating stress-generated over-expression of matrix metalloproteinases (MMPs) in ventricular remodeling. Improved cardiac function may be contributed in part by stem-associated inhibition of extracellular matrix remodeling.  相似文献   

4.
Angiogenesis, new vessel growth from existing vessels, is critical to tissue development and healing. Much is known about the molecular and cellular elements of angiogenesis, such as the effects of growth factors and matrix molecules on proliferation and migration. However, it is not clear how these elements are coordinated to produce specific microvascular beds. To address this, the effects of basic fibroblast growth factor (bFGF) on β1 integrin-mediated adhesion relative to migration in human microvessel endothelial cells (HMVEC) was examined. Using two assays of migration that differ in the density of cells being examined, bFGF stimulated single cell migration and reduced cell migration from a confluent monolayer on collagen I. Adhesion to collagen I of HMVEC treated at low density (2−4 × 104 cells/cm2) with bFGF for 22 h was reduced, while bFGF increased cell adhesion of HMVEC treated at high density (6−8 × 104 cells/cm2). Adhesion of both bFGF-treated and untreated HMVEC was mediated by the β1 integrin matrix receptor. Basic FGF treatment did not significantly alter surface expression of the β1 integrin subunit. Reduction in bFGF-mediated adhesion correlated with delayed cell spreading and altered organization of β1 integrin into substrate contacts. Thus, integrin-mediated cell adhesion in microvessel endothelial cells is sensitive to regulation by a growth factor. Furthermore, the nature of the response to this signal depends on another cell regulator, cell density. In addition, modulation of cell adhesion by a growth factor may be a central regulatory feature in controlling endothelial cell migration. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Mast cells contain proteases capable of activating matrix metalloproteinases (MMPs). However, given the relatively low density of mast cells in the myocardium (i.e., 1.5-5.3 cells/mm(2)), it is unknown whether these enzymes are present in sufficient quantities in the normal heart to mediate MMP activation. Accordingly, this study sought to determine whether chemically induced degranulation of cardiac mast cells (with compound 48/80) would have an effect in isolated, blood-perfused, functioning rat hearts. Mast cell degranulation produced a 15% increase in histamine levels present in the coronary efflux, a significant increase in myocardial water (i.e., edema) relative to normal values (80.1 +/- 3.4% vs. 77.4 +/- 1.08%, P < or = 0.03), a substantial activation of MMP-2 (126% increase relative to controls, P < or = 0.02), and a marked decrease in myocardial collagen volume fraction (0.46 +/- 0.10% vs. 0.97 +/- 0.33%, P < or = 0.001). Furthermore, although an increase in ventricular stiffness was expected due to the extent of edema resulting from mast cell degranulation, modest ventricular dilatation was observed. These findings clearly demonstrate that the number of mast cells present in normal hearts is sufficient to mediate activation of MMPs and produce extracellular matrix degradation, thereby potentially causing subsequent ventricular dilatation.  相似文献   

6.
目的观察慢性心力衰竭大鼠心肌毛细血管密度及血管内皮生长因子(VEGF)变化,探究冠脉微循环障碍的病理特点及病因机制.方法实验组(n=15)皮下注射异丙肾上腺素,对照组(n=10)皮下注射生理盐水,间隔24h,连续2次.12周后测定血液动力学;计算左心室重量/体重;HE染色、Masson染色分别观察左心室病理改变、胶原变化;西非单叶豆素组织化学染色结合图像分析确定心内膜下心肌毛细血管密度、心肌细胞密度、毛细血管密度与心肌细胞密度的比值(毛细血管/心肌细胞);观察心内膜下心肌VEGF免疫组织化学变化.结果同对照组比较,实验组左心室收缩、舒张功能下降(P<0.05);左心室重量/体重升高(P<0.001);心内膜下心肌散在坏死,胶原沉积;心内膜下心肌毛细血管密度、心肌细胞密度、毛细血管/心肌细胞下降(P<0.05);VEGF合成增加(P<0.001).结论慢性心力衰竭大鼠心内膜下心肌毛细血管分布稀疏;该区域毛细血管代偿性生成减少与心肌VEGF表达无关.  相似文献   

7.
Growth characteristics and collagen expression were investigated in GFSk-S1, a cell line derived from the skin of an adult goldfish (Carassius auratus). These cells are anchorage dependent, grow well in Leibovitz-15 medium with 10% fetal bovine serum, and have been subcultured routinely for 5 years. Cells at various passages have been successfully cryopreserved and thawed. GFSk-S1 cells show mainly a fibroblastic morphology at low density, but at confluence islands of epithelial-shaped cells appear among the fibroblastic cells. The cells require little maintenance, and cultures have been kept viable for more than 3 months without medium changes. Although best growth was observed at room temperature, cell proliferation still occurred at 28°C, and a subline was maintained and passaged for over a year at 25°C. Cells were exposed to various concentrations of ascorbic acid, and its effects on collagen secretion were monitored by light and electron microscopy. Under phase-contrast microscopy, confluent GFSk-S1 cells exposed to ascorbic acid at 50 μg/ml showed distinct development of fibres as early as 3 days after treatment. Histochemical staining for collagen demonstrated a thick network of fibres under a monolayer of ascorbic acid- treated GFSk-S1 cells, and observation by transmission electron microscopy showed collagen fibres with typical banding pattern. This cell line appears to show a stable genotype, as collagen expression was induced at all passages. GFSk-S1 could be useful for studies not only of regulation of protein synthesis, but also of cell differentiation and wound healing  相似文献   

8.
Fix C  Bingham K  Carver W 《Cytokine》2011,53(1):19-28
Fibroblasts are the primary cell type responsible for synthesis and remodeling of the extracellular matrix in the heart. A number of factors including growth factors, hormones and mechanical forces have been identified that modulate the production of extracellular matrix by cardiac fibroblasts. Inflammatory mediators including pro-inflammatory cytokines and chemokines also impact fibrosis of the heart. Recent studies have illustrated that interleukin-18 promotes a pro-fibrotic response in cardiac fibroblasts; however the effects of this cytokine on other aspects of fibroblast function have not been examined. While fibroblasts have long been known for their role in production and remodeling of the extracellular matrix, other functions of these cells are only now beginning to be appreciated. We hypothesize that exposure to interleukin-18 will stimulate other aspects of fibroblast behavior important in myocardial remodeling including proliferation, migration and collagen reorganization. Fibroblasts were isolated from adult male rat hearts and bioassays performed to determine the effects of interleukin-18 on fibroblast function. Treatment of fibroblasts with interleukin-18 (1-100ng/ml) resulted in increased production of extracellular matrix components and remodeling or contraction of three-dimensional collagen scaffolds by these cells. Furthermore, exposure to interleukin-18 stimulated fibroblast migration and proliferation. Treatment of heart fibroblasts with interleukin-18 resulted in the rapid activation of the c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3-kinase) pathways. Studies with pharmacological inhibitors illustrated that activation of these pathways is critical to interleukin-18 mediated alterations in fibroblast function. These studies illustrate that interleukin-18 plays a role in modulation of cardiac fibroblast function and may be an important component of the inflammation-fibrosis cascade during pathological myocardial remodeling.  相似文献   

9.
Assembling three-dimensional (3D) tissues from single cells necessitates the use of various advanced technological methods because higher-density tissues require numerous complex capillary structures to supply sufficient oxygen and nutrients. Accordingly, creating healthy culture conditions to support 3D cardiac tissues requires an appropriate balance between the supplied nutrients and cell metabolism. The objective of this study was to develop a simple and efficient method for low-temperature cultivation (< 37 °C) that decreases cell metabolism for facilitating the buildup of 3D cardiac tissues. We created 3D cardiac tissues using cell sheet technology and analyzed the viability of the cardiac cells in low-temperature environments. To determine a method that would allow thicker 3D tissues to survive, we investigated the cardiac tissue viability under low-temperature culture processes at 20–33.5 °C and compared it with the viability under the standard culture process at 37 °C. Our results indicated that the standard culture process at 37 °C was unable to support higher-density myocardial tissue; however, low-temperature culture conditions maintained dense myocardial tissue and prevascularization. To investigate the efficiency of transplantation, layered cell sheets produced by the low-temperature culture process were also transplanted under the skin of nude rats. Cardiac tissue cultured at 30 °C developed denser prevascular networks than the tissue cultured at the standard temperature. Our novel findings indicate that the low-temperature process is effective for fabricating 3D tissues from high-functioning cells such as heart cells. This method should make major contributions to future clinical applications and to the field of organ engineering.  相似文献   

10.
Cultured human dermal fibroblasts suspended in a rapidly polymerizing collagen matrix produce a fibroblast-populated collagen lattice. With time, this lattice will undergo a reduction in size referred to as lattice contraction. During this process, two distinct cell populations develop. At the periphery of the lattice, highly oriented sheets of cells, morphologically identifiable as myofibroblasts, show cell-to-cell contacts and thick, actin-rich staining cytoplasmic stress fibers. It is proposed that these cells undergoing cell contraction produce a multicellular contractile unit which reorients the collagen fibrils associated with them. The cells in the central region, referred to as fibroblasts, are randomly oriented, with few cell-to-cell contacts and faintly staining actin cytoplasmic filaments. In contrast it is proposed that cells working as single units use cell locomotion forces to reorient the collagen fibrils associated with them. Using this model, we sought to determine which of these two mechanisms, cell contraction or cell locomotion, is responsible for the force that contracts collagen lattices. Our experiments showed that fibroblasts produce this contractile force, and that the mechanism for lattice contraction appears to be related to cell locomotion. This is in contrast to a myofibroblast; where the mechanism for contraction is based upon cell contractions. Fibroblasts attempting to move within the collagen matrix reorganize the surrounding collagen fibrils; when these collagen fibrils can be organized no further and cell-to-cell contacts develop, which occurs at the periphery of the lattice first, these cells can no longer participate in the dynamic aspects of lattice contraction.  相似文献   

11.
Intact adult rat hearts were cooled in the presence of 10% DMSO according to an external cooling program which approximated the optimal external three-step cooling program for the isolated adult heart cells: 20 min at ?20 °C, 0.2 °C/min from ?20 to ?25, ?30, or ?50 °C, and rapid cooling to ?196 °C. Following rapid thawing, cells were isolated after perfusion with a 0.1% collagenase solution. Only cells which originated from the free wall of the right ventricle could be isolated, even after cooling to ?20 °C. Most cells from hearts cooled to ?196 °C did not survive. When the third cooling step was omitted and the end temperature of the second cooling step was ?30 °C, 38% of the cells excluded trypan blue, 29% were morphologically intact, and 30% showed spontaneous contractions after thawing, expressed as percentages of the control, A much lower survival was found after cooling to ?50 °C.Histological and electron microscopical study of the heart immediately after thawing revealed no differences between hearts cooled to ?20, ?30, or ?196 °C. Also no marked differences were observed between the morphological integrity after freezing and thawing of the atrium, the left and right ventricle walls, and the ventricular septum. The survival data suggest the presence of nonmorphologically detectable alterations in cells frozen to ?196 °C, compared to cells frozen to ?30 °C. The morphological investigations indicate no essential differences in resistance of atrial and ventricular cells to the freezing process.Experiments involving neonatal rat hearts cooled to ?196 °C, according to the method which gave optimal preservation of the isolated cells, revealed that after thawing cells are present from which growing and contracting cultures can be derived. It appears that cells in the neonatal rat heart are more resistant to freezing to ?196 °C than cells in the adult rat heart.  相似文献   

12.
Dissociated spermatogenic cells were cultivated within the collagen matrix at low cell density. The largest cell type in the culture was identified as the primary spermatocytes by their size and the morphological characteristics revealed by ultra-thin sections. Chromosome analysis showed that about 90% of the cells examined were either in first or second meiosis. Within the collagen matrix, the fates of 282 single primary spermatocytes at meiotic stage in diakinesis or metaphase were followed. In a few days, most of them gave rise to four spermatids, passing through first and second meiotic divisions. About 80% of the spermatids formed motile flagella. They grew about 20–60 μm a day. The final state of the differentiation attained in our culture conditions was the spermatids with localized spherical nuclei and motile flagella, about 500 μm in length after 1-month's culture. Ultra-thin sections of the spermatids show that the rings, neck-pieces, and acrosomes developed in the cells.  相似文献   

13.
G. Rapatz 《Cryobiology》1973,10(2):181-184
It has been shown that frog hearts, perfused with gradually increasing concentrations of ethylene glycol (to 11 m) as the temperature was gradually lowered to ?55 °C and then cooled abruptly to ?78 °C, resumed spontaneous contractions when rewarmed. The thin-walled sinus venosus and atria showed significantly better recovery than the thick-walled ventricle. It was suggested that the difference in recovery of the various parts of the heart might be related to the degree of penetration of the glycol into the tissue. In an attempt to achieve better penetration during perfusion, in particular at subzero temperatures, methanol was substituted for glycol in the perfusate. Hearts equilibrated at room temperature in nontoxic concentrations of methanol were perfused with gradually increasing concentrations as the specimen was gradually cooled to various temperatures. The hearts were gradually rewarmed, and during the rewarming the concentrations of methanol in the perfusate was gradually reduced. All hearts resumed spontaneous rhythmic contractions providing they were not cooled to below ?30 °C or perfused with methanol solutions exceeding 10 m concentration. Cooling to lower temperatures and exposure to higher concentrations of methanol did not permit recovery. These results show that at temperatures as low as ?30 °C methanol in concentrations up to 10 m is comparable to ethylene glycol in its ability to protect hearts from cryoinjury. Its failure to protect at lower temperatures may be related to the development of toxic concentrations when water is removed in the form of ice.  相似文献   

14.
Summary Embryonic chick sternal chondrocytes were cultured either within three dimensional gels of type I collagen, type II collagen or agar, or as monolayers on plastic dishes coated with air-dried films of these matrix macromolecules. It was observed that cell shape and cell growth varied markedly between the different culture conditions. Flattened monolayers of cells on plastic or films of type I or type II collagen, proliferated more rapidly and reached a higher final cell density per culture than the more rounded cells found in the cultures on agar films or within three-dimensional gels. Biosynthetic studies demonstrated that in addition to the synthesis of type II collagen, all the cultures were producing collagen types IX and X. Chondrocytes cultured on plastic or films of the different matrix macromolecules all showed a similar expression of types IX and X collagen, independent of whether they displayed a flattened or round cell morphology. In contrast, marked variations in the proportions of the minor collagens, particularly type X collagen, were observed when the cells were cultured within three-dimensional gels. The data suggest that direct interaction of the cell surface with matrix constituents displaying a particular spatial array could be an important aspect in the control of type IX and X collagen expression by chondrocytes. The financial support of the Arthritis & Rheumatism Council and the Medical Research Council is gratefully acknowledged.  相似文献   

15.
Summary The biosynthetic profile of endothelial cells responding to hyperthermia is altered by extracellular matrix components. The extracellular matrix components influence the quantitative expression of members of the HSP70 family and HSP90. The expression of several HSP70 mRNA species, which are strictly stress inducible, are modulated by extracellular matrix components. Both laminin and collagen type IV decrease the amount of HSP70 protein and mRNA expressed by endothelial cells exposed to hyperthermia relative to control cultures attached to virgin plastic. In contrast, both laminin and collagen type IV increased the amount of HSP90 mRNA constitutively expressed by endothelial cells at 37° C. When endothelial cells were exposed to elevated temperatures, these two extracellular matrix proteins decrease the amount of HSP90 mRNA relative to control cultures attached to virgin plastic. Our observations are consistent with the proposal that the extracellular matrix components regulate gene expression and cell behavior in regard to thermotolerance.  相似文献   

16.
Previously, we have reported sex differences in the cardiac remodeling response to ventricular volume overload whereby male and ovariectomized (OVX) female rats develop eccentric hypertrophy, and intact (Int) female rats develop concentric hypertrophy. In males, this adverse remodeling has been attributed to an initial cascade of events involving myocardial mast cell and matrix metalloproteinase activation and extracellular collagen matrix degradation. The objective of this study was to determine the effect of female hormones on this initial cascade. Accordingly, an aortocaval fistula (Fist) was created in 7-wk-old Int and OVX rats, which, together with sham-operated (sham) controls, were studied at 1, 3, and 5 days postsurgery. In Int-Fist rats, myocardial mast cell density, collagen volume fraction, endothelin (ET)-1, stem cell factor (SCF), and TNF-α remained at control levels or were minimally elevated throughout the study period. This was not the case in the OVX-Fist group, where the initial response included significant increases in mast cell density, collagen degradation, ET-1, SCF, and TNF-α. These events in the OVX-Fist group were abolished by prefistula treatment with a mast cell stabilizer nedocromil. Of note was the observation that ET-1, TNF-α, SCF, and collagen volume fraction values for the OVX-sham group were greater than those of the Int-sham group, suggesting that the reduction of female hormones alone results in major myocardial changes. We concluded that female hormone-related cardioprotection to the volume stressed myocardium is the result of an altered mast cell phenotype and/or the prevention of mast cell activation.  相似文献   

17.
Epithelial cells of normal rat liver origin (strain RL34) synthesized the α1 peptide of type I collagen. In nononcogenic cultures (RL34 and RL34EC) and a marginally oncogenic culture (RL34HII), the peptide was continuously secreted from the proliferating cells. Part of the soluble peptide was incorporated into the intercellular matrix of contact-inhibited cells after confluency, while the remainder was degraded. The intercellular matrix contained characteristic collagen fibrils which were argyrophilic and revealed a 64 nm axial periodicity. Epithelial cells of an oncogenic culture (RL34HT) secreted procollagen into the medium continuously throughout their proliferative phases and were unable to accumulate collagen fibrils in the intercellular matrix. The depletion of collagen accumulation in the hepatocarcinoma cell culture was ascribed to lack of the binding of native collagen molecules to the cell membrane and the persistence of high proteolytic activity on the cell surface.  相似文献   

18.
Background Previous study demonstrated the improvement of cardiac function was proportional to the number of cells implanted. Therefore, increasing cell survival in the infarcted myocardium might contribute to the improvement of the functional benefit of cell transplantation. Methods and results MSCs were treated with IGF-1 in vitro and infused into the acute myocardial infarction rats via the tail vein. After treatment of MSCs with IGF-1 for 48 h, flow cytometric analysis showed marked enhancement of expression of CXCR4 in the cell surface. After 4 weeks of transplantation, we found 1) a greater number of engrafted MSCs arrived and survived in the peri-infarct region; 2) TnT protein expression and capillary density were enhanced; 3) LV cavitary dilation, transmural infarct thinning, deposition of total collagen in the peri-infarct region and cardiac dysfunction were attenuated. Conclusion 1) IGF-1 treatment has time-dependent and dose-dependent effects on CXCR4 expression in MSCs in vitro. 2) IGF-1 improves the efficacy of MSCs transplantation in a rat model of myocardial infarction mainly via enhancement of the number of cells attracted into the infarcted heart. These findings provide a novel stem cell therapeutic avenue against ischemic heart disease.  相似文献   

19.
Hyperglycemia-induced protein glycation is thought to be implicated in the diabetic vasculopathy. In this study, we cultured vascular endothelial cells on native or glycated collagen matrix and compared their growth and functional characteristics. At lower plating density, the cells grew equally well on both substrata; however, at higher planting density, the cells plated on glycated collagen grew slower and reached a lower confluent density compared to that of the native collagen-based cultures. Confluent cell layers formed on glycated collagen exhibited a lower diffusion barrier function and a less response to epidermal growth factor stimulated prostacyclin production, compared to their native collagen-cultured counterparts.  相似文献   

20.
The aim of this study was to compare between the changes undergone by the dermal collagen framework when heated by IR laser radiation and by traditional means and to reveal the specific features of the dermal matrix modification under moderate IR laser irradiation. Rabbit skin specimens were heated to 50°C, 55°C, 60°C and 65°C in a calorimeter furnace and with a 1.68‐μm fiber Raman laser. The proportion of the degraded collagen macromolecules was determined by differential scanning calorimetry. Changes in the architectonics of the collagen framework were revealed by using standard, phase‐contrast, polarization optical and scanning electron microscopy techniques. The collagen denaturation and dermal matrix amorphization temperature in the case of laser heating proved to be lower by 10°C than that for heating in the calorimeter furnace. The IR laser treatment of the skin was found to cause a specific low‐temperature (45°C‐50°C) transformation of its collagen framework, with some collagen macromolecules remaining intact. The transformation reduces to the splitting of collagen bundles and distortion of the course of collagen fibers. The denaturation of collagen macromolecules in the case of traditional heating takes its course in a threshold manner, so that their pre‐denaturation morphological changes are insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号