首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetes induces changes in the structure and function of the extracellular matrix (ECM) in many tissues. We investigated the effects of diabetes, physical training, and their combination on the gene expression of ECM proteins in skeletal muscle. Mice were divided to control (C), training (T), streptozotocin-induced diabetic (D), and diabetic training (DT) groups. Training groups (T, DT) performed 1, 3, or 5 wk of endurance training on a treadmill. Gene expression of calf muscles was analyzed using microarray and quantitative PCR. Training group samples were collected 24 h after the last training session. Diabetes affected the gene expression of several collagens (types I, III, IV, V, VI, and XV), some noncollagenous glycoproteins, and proteoglycans (e.g., elastin, thrombospondin-1, laminin-2, decorin). Reduced gene expression of collagens in diabetic skeletal muscle was partially attenuated as a result of physical training. In diabetes, mRNA expression of the basement membrane (BM) collagens decreased and that of noncollagenous glycoproteins increased. This may change the structure of the BM in a less collagenous direction and affect its properties.  相似文献   

2.
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.  相似文献   

3.
4.
The biological response of muscle to eccentric contractions (ECs) results in strengthening and protection from further injury. However, the cellular basis for this response remains unclear. Previous studies identified the muscle ankyrin repeat protein (MARP) family, consisting of cardiac ankyrin repeat protein (CARP), ankyrin repeat domain 2/ankyrin repeat protein with PEST and proline-rich region (Ankrd2/Arpp), and diabetes-associated ankyrin repeat protein (DARP), as rapidly and specifically upregulated in mice after a single bout of EC. To determine the role of these genes in skeletal muscle, a survey of skeletal muscle structural and functional characteristics was performed on mice lacking all three MARP family members (MKO). There was a slight trend toward MKO muscles having a slower fiber type distribution but no differences in muscle fiber size. Single MKO fibers were less stiff, tended to have longer resting sarcomere lengths, and expressed a longer isoform of titin than their wild-type counterparts, indicating that these proteins may play a role in the passive mechanical behavior of muscle. Finally, MKO mice showed a greater degree of torque loss after a bout of ECs compared with wild-type mice, although they recovered from the injury with the same or even improved time course. This recovery was associated with enhanced expression of the muscle regulatory genes MyoD and muscle LIM protein (MLP), suggesting that the MARP family may play both important structural and gene regulatory roles in skeletal muscle. CARP; Ankrd2; Arpp; DARP; eccentric contractions; titin  相似文献   

5.
Titin is a molecular spring that determines the passive stiffness of muscle cells. Changes in titin’s stiffness occur in various myopathies, but whether these are a cause or an effect of the disease is unknown. We studied a novel mouse model in which titin’s stiffness was slightly increased by deleting nine immunoglobulin (Ig)-like domains from titin’s constitutively expressed proximal tandem Ig segment (IG KO). KO mice displayed mild kyphosis, a phenotype commonly associated with skeletal muscle myopathy. Slow muscles were atrophic with alterations in myosin isoform expression; functional studies in soleus muscle revealed a reduced specific twitch force. Exon expression analysis showed that KO mice underwent additional changes in titin splicing to yield smaller than expected titin isoforms that were much stiffer than expected. Additionally, splicing occurred in the PEVK region of titin, a finding confirmed at the protein level. The titin-binding protein Ankrd1 was highly increased in the IG KO, but this did not play a role in generating small titin isoforms because titin expression was unaltered in IG KO mice crossed with Ankrd1-deficient mice. In contrast, the splicing factor RBM20 (RNA-binding motif 20) was also significantly increased in IG KO mice, and additional differential splicing was reversed in IG KO mice crossed with a mouse with reduced RBM20 activity. Thus, increasing titin’s stiffness triggers pathological changes in skeletal muscle, with an important role played by RBM20.  相似文献   

6.
7.
8.
Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 x 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (ET approximately 8.5-fold, ST approximately 10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET approximately 26-fold, ST approximately 39-fold), vascular endothelial growth factor (VEGF; ET approximately 4.5-fold, ST approximately 4-fold), and muscle atrophy F-box protein (MAFbx) (ET approximately 2-fold, ST approximately 0.4-fold) mRNA increased in both groups, whereas MyoD (approximately 3-fold), myogenin (approximately 0.9-fold), and myostatin (approximately 2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (approximately 7-fold, P < 0.01) and MyoD (approximately 0.7-fold) increased, whereas MAFbx (approximately 0.7-fold) and myostatin (approximately 0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.  相似文献   

9.
In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P < 0.05), but the effect of eccentric training was greater than concentric and isometric training (P < 0.05). In tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P < 0.01). In tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P < 0.05), and for IGF-IEa isometric training had greater effect than concentric (P < 0.05). The results indicate a possible role for IGF-IEa and MGF in adaptation of tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.  相似文献   

10.
11.
12.
13.
Titin is a giant protein with multiple functions in cardiac and skeletal muscles. Rat cardiac titin undergoes developmental isoform transition from the neonatal 3.7 MDa N2BA isoform to primarily the adult 2.97 MDa N2B isoform. An autosomal dominant mutation dramatically altered this transformation. Titins from eight skeletal muscles: Tibialis Anterior (TA), Longissimus Dorsi (LD) and Gastrocnemius (GA), Extensor Digitorum Longus (ED), Soleus (SO), Psoas (PS), Extensor Oblique (EO), and Diaphram (DI) were characterized in wild type and in homozygous mutant (Hm) rats with a titin splicing defect. Results showed that the developmental reduction in titin size is eliminated in the mutant rat so that the titins in all investigated skeletal muscles remain large in the adult. The alternative splicing of titin mRNA was found repressed by this mutation, a result consistent with the large titin isoform in the mutant. The developmental pattern of titin mRNA alternative splicing differs between heart and skeletal muscles. The retention of intron 49 reveals a possible mechanism for the absence of the N2B unique region in the expressed titin protein of skeletal muscle.  相似文献   

14.
The ubiquitin-proteasome system is thought to play a major role in normal muscle protein turnover and to contribute to diabetes-induced protein wasting in skeletal muscle. However, its importance in cardiac muscle is not clear. We measured heart muscle mRNA for ubiquitin and for the C2 and C8 proteasomal subunits, the amount of free ubiquitin and the proteasome chymotrypsin-like proteolytic activity in control and diabetic rats. Results were compared to those in skeletal muscle (rectus). Heart ubiquitin, C2 and C8 subunit mRNA and proteolytic activity were significantly greater than in skeletal muscle (P 相似文献   

15.
Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.  相似文献   

16.
The expression of myostatin mRNA was examined in regenerating skeletal muscle of the rat. Skeletal muscle regeneration was induced by injecting bupivacaine or hypertonic saline solution into the femoral muscle, and the tissues were collected 48 h after the treatment. In situ hybridization analysis revealed that the cells positive for myostatin message were localized in the regenerating area of the bupivacaine-treated tissues, where a numerous number of mononucleated cells were present. The myostatin-positive mononucleated cells contained both myogenic and nonmyogenic cells, as revealed by immunohistochemical staining for desmin and vimentin. Bupivacaine treatment to the testes resulted in no myostatin message expression in the testicular vimentin-positive cells, suggesting that the expression of myostatin message in vimentin-positive cells is a skeletal muscle-specific phenomenon. Furthermore, crushed muscle extract prepared from regenerating skeletal muscle had induced myostatin mRNA expression in skeletal muscle-derived fibroblasts in a dose-dependent manner. These results indicated that myostatin is expressed during skeletal muscle regeneration both in myogenic and nonmyogenic cells, and suggested that some factor(s) capable of inducing myostatin expression in fibroblasts are present in regenerating skeletal muscle.  相似文献   

17.
Obesity is a widespread problem across the leisure population of horses and ponies in industrialised nations. Skeletal muscle is a major contributor to whole body resting energy requirements and communicates with other tissues through the secretion of myokines into the circulation. Myostatin, a myokine and negative regulator of skeletal muscle mass, has been implicated in obesity development in other species. This study evaluated gene and protein expression of myostatin and its receptor, ActRIIB in adipose tissues and skeletal muscles and serum myostatin concentrations in six lean and six obese animals to explore putative associations between these factors and obesity in horses and ponies. Myostatin mRNA expression was increased while ActRIIB mRNA was decreased in skeletal muscles of obese animals but these differences were absent at the protein level. Myostatin mRNA was increased in crest fat of obese animals but neither myostatin nor ActRIIB proteins were detected in this tissue. Mean circulating myostatin concentrations were significantly higher in obese than in lean groups; 4.98 ng/ml (±2.71) and 9.00 ng/ml (±2.04) for the lean and obese groups, respectively. In addition, there was a significant positive association between these levels and myostatin gene expression in skeletal muscles (average R2 = 0.58; p<0.05). Together, these results provide further basis for the speculation that myostatin and its receptor may play a role in obesity in horses and ponies.  相似文献   

18.
Type 1 diabetes, if poorly controlled, leads to skeletal muscle atrophy, decreasing the quality of life. We aimed to search highly responsive genes in diabetic muscle atrophy in a common diabetes model and to further characterize associated signaling pathways. Mice were killed 1, 3, or 5 wk after streptozotocin or control. Gene expression of calf muscles was analyzed using microarray and protein signaling with Western blotting. We identified translational repressor protein REDD1 (regulated in development and DNA damage responses) that increased seven- to eightfold and was associated with muscle atrophy in diabetes. The diabetes-induced increase in REDD1 was confirmed at the protein level. This result was accompanied by the increased gene expression of DNA damage/repair pathways and decreased expression in ATP production pathways. Concomitantly, increased phosphorylation of AMPK and dephosphorylation of the Akt/mTOR/S6K1/FoxO pathway of proteins were observed together with increased protein ubiquitination. These changes were especially evident during the first 3 wk, along with the strong decrease in muscle mass. Diabetes also induced an increase in myostatin protein and decreased MAPK signaling. These, together with decreased serum insulin and increased serum glucose, remained altered throughout the 5-wk period. In conclusion, diabetic myopathy induced by streptozotocin led to alteration of multiple signaling pathways. Of those, increased REDD1 and myostatin together with decreased Akt/mTOR/FoxO signaling are associated with diabetic muscle atrophy. The increased REDD1 and decreased Akt/mTOR/FoxO signaling followed a similar time course and thus may be explained, in part, by increased expression of genes in DNA damage/repair and possibly also decrease in ATP-production pathways.  相似文献   

19.
A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future.  相似文献   

20.
The purpose of this investigation was to evaluate changes in myosin heavy chain (MyHC) and titin isoforms after using various loads during explosive jump squat training. Twenty-four male athletic subjects were recruited for this study. Two experimental groups performed 8-weeks of jump squats using either 30% (n = 9) or 80% (n = 9) of their previously determined 1 repetition maximum. A third group served as controls (n = 6). Muscle biopsies were obtained before and after 8 weeks from vastus lateralis. The analysis of titin within these subjects confirmed that human skeletal muscle contains 2 isoforms of titin. There was no significant group x time interaction for MyHC or titin isoform expression. The data from this investigation indicates that a relatively short period of explosive resistance training results in negligible changes in the expression of MyHC or titin isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号