首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal malnutrition adversely affects fetal body and brain growth during late gestation. We utilized a fetal brain cell culture model to examine whether alternations in circulating factors may contribute to reduce brain growth during maternal starvation; we then used specific immunoassay and western blotting techniques, and purified peptides to investigate the potential role that altered levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) may play in impaired growth during maternal nutritional restriction.Fetal, body, liver, and brain weight were reduced after 72 hr maternal starvation, and plasma from starved fetuses were less potent than fed fetal plasma in stimulating brain cell growth. Circulating levels of IGF-I were reduced in starved compared to fed fetuses, while levels of IGF-II were similar in both groups. In contrast, [125I]-IGF-I binding assay demonstrated an increase in the availability of plasma IGFBPs following starvation. Western ligand blotting and densitometry indicated that levels of 32 Kd IGFBPs were 2-fold higher in starved compared to fed fetal plasma. Immunoblotting and immunoprecipitation with antiserum against rat IGFBP-1 confirmed that heightened levels of immunoreactive IGFBP-1 accounted for the increase in 32 Kd IGFBPs in starved plasma. Levels of 34 Kd BPs, representing IGFBP-2, were unaffected by starvation. Reconstitution experiments in cell culture showed that IGF-I promoted fetal brain cell growth, and that when they were supplemented with IGF-I, the growth promoting activity of starved fetal plasma was restored to fed levels. These changes were measured using MTT to assess mitochondrial reductase activity. Conversely, addition of physiological amounts of rat IGFBP-1 inhibited the effects of fed fetal plasma on brain cell growth, and bioactivity was reduced even further with higher concentrations of IGFBP-1. Based on these results, we conclude that reciprocal changes in circulating levels of IGFBP-1 (increased) and IGF-I (decreased) may combine to reduce the availability of IGF-I to this tissue and limit fetal brain cell growth when maternal nutrition is impaired.  相似文献   

2.
The aim of the present study was to investigate the effects of administering a high plane diet during early to mid-gestation on the uterine and placental insulin-like growth factor (IGF) system and on systemic IGF-I concentrations in pregnant adolescent ewes with restricted placental growth. Embryos recovered from superovulated ewes inseminated by a single sire were transferred in singleton to the uterus of adolescent recipients. After transfer ewes were offered a high (H) or moderate (M) amount of a complete diet calculated to promote rapid or normal maternal growth rates, respectively. Five ewes from each group were switched from either M to H or H to M diets at day 52 of gestation. Maternal and fetal blood samples and placental tissues were collected from all animals at day 104. Ewes on the high plane diet from mid-gestation (HH, MH groups) had restricted placental mass (P < 0.01) and tended to have smaller fetuses. This was associated with increased maternal plasma IGF-I concentrations (P < 0.001). The pattern of expression of components of the IGF system in the uterus and placenta was studied by in situ hybridization. IGF-I mRNA concentrations were below the limit of detection. IGF-II mRNA expression was high in the fetal mesoderm and present in maternal stroma, but was not influenced by nutritional treatment. In contrast, IGF binding protein 1 (IGFBP-1) mRNA expression was higher (P < 0.05) and IGFBP-3 mRNA expression was lower (P < 0.05) in the endometrial glands of ewes in HH and MH groups. In the fetal trophoblast, IGFBP-3 mRNA expression was higher in the MH group. Type 1 IGF receptor expression was increased (P < 0. 01) in the luminal epithelium of the HM group and IGFBP-2 mRNA expression was highest in the placentome capsule of ewes in the HH group. Together, these results indicate that reprogramming of the uterine and placental IGF axis by maternal nutrition could contribute to placental growth retardation in growing adolescent sheep.  相似文献   

3.
The effects of indomethacin on the ethanol-induced suppression of fetal breathing movements and fetal arterial plasma and cerebrospinal fluid (CSF) PGE2 concentrations and maternal arterial plasma PGE2 concentration were determined in the near-term fetal lamb. Eight conscious instrumented pregnant ewes (between 130 and 133 days of gestation; term, 147 days) received 1-h maternal intravenous infusion of 1 g ethanol/kg total body weight, and the fetus received 6-h intravenous infusion of indomethacin (1 mg/h per kg fetal body weight) commencing 30 min later. Serial fetal and maternal arterial blood samples (n = 8) and fetal CSF samples (n = 5) were collected at selected times throughout the 12-h study for the determination of PGE2 concentration. Fetal breathing movements were monitored continuously throughout the experimental period. Maternal ethanol infusion resulted in initial suppression (P less than 0.05) of fetal breathing movements for 2 h below pretreatment value, followed by a rapid increase in the incidence of fetal breathing movements after the onset of fetal indomethacin treatment. Fetal and maternal plasma PGE2 concentrations and fetal CSF PGE2 concentration were increased (P less than 0.05) above the pre-infusion value during the administration of ethanol and 1 h thereafter. Fetal indomethacin treatment suppressed (P less than 0.05) to undetectable levels fetal plasma and CSF PGE2 concentrations, which then became similar (P greater than 0.05) to pretreatment by 12 h. There was a positive correlation between fetal plasma and CSF PGE2 concentrations. There was an inverse correlation between the incidence of fetal breathing movements and fetal CSF PGE2 concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Maternal alcohol consumption during pregnancy can affect fetal development, but little is known about the effects on the developing kidney. Our objectives were to determine the effects of repeated ethanol exposure during the latter half of gestation on glomerular (nephron) number and expression of key genes involved in renal development or function in the ovine fetal kidney. Pregnant ewes received daily intravenous infusion of ethanol (0.75 g/kg, n=5) or saline (control, n=5) over 1 h from 95 to 133 days of gestational age (DGA; term is approximately 147 DGA). Maternal and fetal arterial blood samples were taken before and after the start of the daily ethanol infusions for determination of blood ethanol concentration (BEC). Necropsy was performed at 134 DGA, and fetal kidneys were collected for determination of total glomerular number using the physical disector/fractionator technique; at this gestational age nephrogenesis is completed in sheep. Maximal maternal and fetal BECs of 0.12+/-0.01 g/dl (mean+/-SE) and 0.11+/-0.01 g/dl, respectively, were reached 1 h after starting maternal ethanol infusions. Ethanol exposure had no effect on fetal body weight, kidney weight, or the gene expression of members of the renin-angiotensin system, insulin-like growth factors, and sodium channels. However, fetal glomerular number was lower after ethanol exposure (377,585+/-8,325) than in controls (423,177+/-17,178, P<0.001). The data demonstrate that our regimen of fetal ethanol exposure during the latter half of gestation results in an 11% reduction in nephron endowment without affecting the overall growth of the kidney or fetus or the expression of key genes involved in renal development or function. A reduced nephron endowment of this magnitude could have important implications for the cardiovascular health of offspring during postnatal life.  相似文献   

5.
Exposure to synthetic glucocorticoids in utero markedly improves survival after preterm birth, but repeated exposures impair fetal and postnatal growth and are associated with evidence of insulin resistance in later life. The insulin-like growth factor (IGF) axis is an important regulator of growth and metabolism before and after birth. We have therefore investigated the effects of repeated maternal betamethasone injections on plasma IGF-I, IGF-II, and IGF-binding proteins (IGFBP) in fetal and postnatal progeny in the sheep. Pregnant sheep carrying male fetuses were injected with saline or betamethasone at 104, 111, and 118 days of gestation (dG, term approximately 150 dG). Plasma samples were collected postmortem from fetuses before (75, 84, 101 dG) or after one (109 dG), two (116 dG), or three (121-122, 132-133, 145-147 dG) doses of saline or betamethasone and from progeny at 42 and 84 days of age. Fetal weight was reduced after two or more maternal betamethasone injections, and this effect persisted to term. Repeated betamethasone exposures reduced plasma IGF-I and total IGFBP in fetuses at 133 dG and progeny at 84 days, and reduced plasma IGFBP-3 at 84 days. Fetal plasma IGF-II tended to increase transiently at 109 dG following the first betamethasone injection. Fetal, placental, and/or postnatal weights correlated positively with concomitant plasma IGF-I, IGF-II, and total IGFBP. We conclude that repeated exposure to synthetic glucocorticoids in utero programs the IGF axis before and after birth, which may contribute to the adverse effects of betamethasone exposure on growth and metabolism.  相似文献   

6.
During perinatal development, the regulation of IGF system appears to be growth hormone (GH) independent. By using highly purified primary fetal hepatocytes, we investigated the role of prolactin (PRL) in the regulation of IGF system and hepatocyte proliferation. We also analyzed the consequence of a maternal low-protein (LP) diet on the regulation of IGF, IGF-binding protein (IGFBP), and hepatocyte proliferation by prolactin. Pregnant Wistar rats were fed a control (C) diet (20% protein) or isocaloric (LP; 8%) diet throughout gestation. On day 21.5, fetal hepatocytes were cultured for 4 days and incubated with rat prolactin. In the C hepatocytes, PRL at 100 ng/ml decreased the abundance of IGFBP-1 and IGFBP-2 by 50 (P < 0.05) and 60% (P < 0.01), respectively. It also reduced by 70% the level of IGF-II mRNA (P < 0.01). By contrast, PRL failed to modulate IGFBP-1 and IGFBP-2 production by LP hepatocytes, and this was associated with reduced abundance of the short form of PRL receptor (P < 0.05). PRL had no effect on either the proliferation or the IGF-I production by C and LP hepatocytes, although it reduced the expression of IGF-II. These results suggest that prolactin influences hepatocyte proliferation in vitro by inhibiting IGFBP-1, IGFBP-2, and IGF-II levels, which may coincide with the decline of IGF-II observed in rodents during late gestation in vivo. On the other hand, maternal LP diet induces a resistance of fetal hepatocytes to PRL.  相似文献   

7.
Appropriate partitioning of nutrients between the mother and conceptus is a major determinant of pregnancy success, with placental transfer playing a key role. Insulin-like growth factors (IGFs) increase in the maternal circulation during early pregnancy and are predictive of fetal and placental growth. We have previously shown in the guinea pig that increasing maternal IGF abundance in early to midpregnancy enhances fetal growth and viability near term. We now show that this treatment promotes placental transport to the fetus, fetal substrate utilization, and nutrient partitioning near term. Pregnant guinea pigs were infused with IGF-I, IGF-II (both 1 mg.kg-1.day-1) or vehicle subcutaneously from days 20-38 of pregnancy (term=69 days). Tissue uptake and placental transfer of the nonmetabolizable radio analogs [3H]methyl-D-glucose (MG) and [14C]aminoisobutyric acid (AIB) in vivo was measured on day 62. Early pregnancy exposure to elevated maternal IGF-I increased placental MG uptake by>70% (P=0.004), whereas each IGF increased fetal plasma MG concentrations by 40-50% (P<0.012). Both IGFs increased fetal tissue MG uptake (P<0.048), whereas IGF-I also increased AIB uptake by visceral organs (P=0.046). In the mother, earlier exposure to either IGF increased AIB uptake by visceral organs (P<0.014), whereas IGF-I also enhanced uptake of AIB by muscle (P=0.044) and MG uptake by visceral organs (P=0.016) and muscle (P=0.046). In conclusion, exogenous maternal IGFs in early pregnancy sustainedly increase maternal substrate utilization, placental transport of MG to the fetus, and fetal utilization of substrates near term. This was consistent with the previously observed increase in fetal growth and survival following IGF treatment.  相似文献   

8.
BACKGROUND: In pregnant primates, the effect of post-prandial hyperglycemic or insulinemic states on leptin production is not known. Our goal was to conduct a controlled study using an established pregnant baboon model ( PAPIO ANUBIS) to determine whether acute glucose changes would have an effect on maternal or fetal plasma leptin levels. METHODS: Two animals were operated on at 138 and 140 days of gestation (term approximately 184 days) by placing 4 cannulae in the maternal aorta, inferior vena cava, fetal carotid artery, and the amniotic cavity. At 145 and 150 days, glucose infusions were started via the maternal femoral vein. Animal 1 received 7.5 gm of glucose over a 2-hour period at 145th day. Animal 2 received 20 gm of glucose over a 1-hour period at 150th day. Both animals remained AD LIBITUM throughout the experiments. Maternal and fetal blood samples were obtained from the arterial lines before the glucose infusion and at half hour intervals to include 30 minutes post-infusion. RESULTS: Significant changes from baseline concentrations were observed for maternal and fetal glucose and insulin concentrations in response to both glucose challenges. Maternal and fetal plasma leptin concentrations did not correlate with glucose or insulin changes. CONCLUSION: This preliminary study demonstrated that in primates, acute changes in circulating maternal or fetal glucose or insulin concentration do not affect maternal or fetal plasma leptin concentrations. These results suggest that alterations in leptin secretion by the maternal-placental-fetal unit may only occur in pathological states.  相似文献   

9.
M Dalle  P Pradier  P Delost 《Steroids》1983,42(5):511-523
During continuous infusion of 3H-cortisol in the circulation of the guinea-pig mother or fetus, radioactive metabolites appear in both maternal and fetal blood. These cortisol-derived compounds were identified principally as cortisone, tetrahydrocortisol (THF) and tetrahydrocortisone (THE). There were unidentified others in low quantities. The cortisone of the maternal plasma is 100% maternal in origin since that of the fetal plasma is 50% fetal in origin between days 62 and 66 and increased thereafter. An identical profile was noted for THF. THE seemed to be synthetized in the fetal guinea-pig and was transferred to the mother in increasing amounts near term. Liver concentrations of cortisol were higher than those of plasma in the mother. Maternal liver appeared to be the main organ of cortisol metabolism in the mother-fetus unit, but maternal adrenal may contribute to this metabolism.  相似文献   

10.
BACKGROUND: Fetal uptake of an antisense oligonucleotide was evaluated after intravenous (i.v.) dosing of ISIS 2105, a 20-base phosphorothioate oligonucleotide, in timed-pregnant Sprague-Dawley rats. METHODS: To maximize the potential for fetal exposure, ISIS 2105 was administered as a 3-hr infusion at 6.6 mg/kg/hr with a total dose of 20 mg/kg, or as a continuous 7-day infusion at 0.35 mg/kg/hr with a total dose of 59 mg/kg. This dosing regime is higher than a patient would be expected to receive in the clinical use of oligonucleotides. Infusions were delivered through a jugular vein cannula by syringe pump on gestation day (GD) 19 (3-hr exposure) or by osmotic pumps implanted subcutaneously (s.c.) starting on GD 12 (7-day exposures). RESULTS: After a 3-hr infusion, maternal and fetal plasma concentrations of ISIS 2105 were >100 microg/ml and <0.07 microg/ml, respectively with a maternal fetal ratio of >1,000. Maternal regions of the placenta had twice the oligonucleotide concentration compared to fetal regions of the placenta (6 microg/g vs. 3 microg/g). After this acute exposure the concentrations in fetal kidney and liver were approximately 140- and 500-fold less than the maternal kidney and liver respectively. After 7-day infusion maternal plasma concentrations were 0.82 microg/ml and fetal concentrations were <0.22 microg/ml. By capillary gel electrophoresis (CGE) only the fetal liver consistently had quantifiable oligonucleotide concentrations (range=1.01-4.95 microg/g) compared to a mean concentration of 50.11+/-1.71 microg/g in the maternal liver a maternal to fetal ratio of approximately 10:50 after 7 days of infusion. CONCLUSIONS: There was a low level of transfer from dam to fetus, consistent with a slow equilibrium but the permeability of placenta to this 6 kDa polyanionic compound seemed to be limited even at supraclinical doses.  相似文献   

11.
The effect of ethanol on maternal and fetal blood gases and acid-base balance was determined in six conscious instrumented near-term pregnant ewes for maternal intravenous infusion of 3 g ethanol/kg total body weight administered as six doses of 0.5 g ethanol/kg total body weight over 8 h. Maternal and fetal blood ethanol concentrations, determined in two animals, were maximal at 8 h (3.74 and 3.82 mg/mL, respectively) and were virtually identical during the 24-h study. Maternal and fetal blood gases and acid-base balance were not significantly altered during and after ethanol administration compared with preinfusion values. The data demonstrate that, during near-term ovine pregnancy, the equivalent of a binge-type drinking episode does not produce fetal hypoxia or acidosis. Furthermore, these data do not support the postulated involvement of ethanol-induced fetal hypoxia in the mechanism of ethanol teratogenesis.  相似文献   

12.
Fetal growth restriction (FGR) increases the risk of perinatal complications and predisposes the infant to developing metabolic, cardiovascular, and neurological diseases in childhood and adulthood. The pathophysiology underlying FGR remains poorly understood and there is no specific treatment available. Biomarkers for early detection are also lacking. The insulin-like growth factor (IGF) system is an important regulator of fetal growth. IGF-I is the primary regulator of fetal growth, and fetal circulating levels of IGF-I are decreased in FGR. IGF-I activity is influenced by a family of IGF binding proteins (IGFBPs), which bind to IGF-I and decrease its bioavailability. During fetal development the predominant IGF-I binding protein in fetal circulation is IGFBP-1, which is primarily secreted by the fetal liver. IGFBP-1 binds IGF-I and thereby inhibits its bioactivity. Fetal circulating levels of IGF-I are decreased and concentrations of IGFBP-1 are increased in FGR. Phosphorylation of human IGFBP-1 at specific sites markedly increases its binding affinity for IGF-I, further limiting IGF-I bioactivity. Recent experimental evidence suggests that IGFBP-1 phosphorylation is markedly increased in the circulation of FGR fetuses suggesting an important role of IGFBP-1 phosphorylation in the regulation of fetal growth. Understanding of the significance of site-specific IGFBP-1 phosphorylation and how it is regulated to contribute to fetal growth will be an important step in designing strategies for preventing, managing, and/or treating FGR. Furthermore, IGFBP-1 hyperphosphorylation at unique sites may serve as a valuable biomarker for FGR.  相似文献   

13.
The effect of short-term maternal ethanol administration on the ethanol-induced suppression of fetal breathing movements, electrocortical (ECoG) activity, and electroocular (EOG) activity was determined in the near-term fetal sheep. Twelve conscious instrumented pregnant ewes (between 125 and 139 days of gestation; term, 147 days) received 1-h intravenous infusion of 1 g ethanol/kg total body weight daily for six days (n = 6) or an equivalent volume of normal saline daily for six days (n = 6). On the seventh day, the ethanol- and saline-pretreated animals were administered 1 g ethanol/kg total body weight. A further six ewes received 1-h intravenous infusion of 1 g ethanol/kg total body weight (n = 3) or an equivalent volume of normal saline (n = 3) daily for thirteen days with both groups receiving 1 g ethanol/kg total body weight on day fourteen. Fetal ECoG and EOG activities, and fetal breathing movements were monitored continuously over the post- operative and experimental periods. Saline infusion had no significant effect on the parameters studied. Fetal breathing movements were suppressed for 8 h after the first ethanol dose, and were not significantly suppressed after fourteen days of once-daily, maternal ethanol administration. Low-voltage ECoG and EOG activities were suppressed for 3 h after the first ethanol dose, and were not significantly suppressed after seven days of repeated ethanol administration. Maternal and fetal blood gases and acid-base balance were not significantly affected by maternal ethanol administration. These data demonstrate that short-term maternal administration of ethanol results in the development of tolerance to ethanol in the mature fetus.  相似文献   

14.
High levels of ethanol (EtOH) consumption during pregnancy adversely affect fetal development; however, the effects of lower levels of exposure are less clear. Our objectives were to assess the effects of daily EtOH exposure (3.8 USA standard drinks) on fetal-maternal physiological variables and the fetal brain, particularly white matter. Pregnant ewes received daily intravenous infusions of EtOH (0.75 g/kg maternal body wt over 1 h, 8 fetuses) or saline (8 fetuses) from 95 to 133 days of gestational age (DGA; term ~145 DGA). Maternal and fetal arterial blood was sampled at 131-133 DGA. At necropsy (134 DGA) fetal brains were collected for analysis. Maternal and fetal plasma EtOH concentrations reached similar maximal concentration (~0.11 g/dl) and declined at the same rate. EtOH infusions produced mild reductions in fetal arterial oxygenation but there were no changes in maternal oxygenation, maternal and fetal Pa(CO(2)), or in fetal mean arterial pressure or heart rate. Following EtOH infusions, plasma lactate levels were elevated in ewes and fetuses, but arterial pH fell only in ewes. Fetal body and brain weights were similar between groups. In three of eight EtOH-exposed fetuses there were small subarachnoid hemorrhages in the cerebrum and cerebellum associated with focal cortical neuronal death and gliosis. Overall, there was no evidence of cystic lesions, inflammation, increased apoptosis, or white matter injury. We conclude that daily EtOH exposure during the third trimester-equivalent of ovine pregnancy has modest physiological effects on the fetus and no gross effects on fetal white matter development.  相似文献   

15.

Background

Exposure of pregnant mothers to elevated concentrations of circulating testosterone levels is associated with fetal growth restriction and delivery of small-for-gestational-age babies. We examined whether maternal testosterone crosses the placenta to directly suppress fetal growth or if it modifies placental function to reduce the capacity for transport of nutrients to the fetus.

Methods

Pregnant rats were exposed to testosterone propionate (TP; 0.5 mg/kg) by daily subcutaneous injection from gestational days (GD) 15-19. Maternal and fetal testosterone levels, placental nutrient transport activity and expression of transporters and birth weight of pups and their anogenital distances were determined.

Results

This dose of TP doubled maternal testosterone levels but had no effect on fetal testosterone levels. Maternal daily weight gain was significantly lower only on GD 19 in TP treated dams compared to controls. Placental weight and birth weight of pups were significantly reduced, but the anogenital distance of pups were unaffected by TP treatment. Maternal plasma amino acids concentrations were altered following testosterone exposure, with decreases in glutamine, glycine, tyrosine, serine, proline, and hydroxyproline and increases in asparagine, isoleucine, leucine, lysine, histidine and arginine. In the TP dams, placental system A amino acid transport activity was significantly reduced while placental glucose transport capacity was unaffected. Decreased expression of mRNA and protein levels of slc38a2/Snat2, an amino acid transporter, suggests that reduced transporter proteins may be responsible for the decrease in amino acid transport activity.

Conclusions

Taken together, these data suggest that increased maternal testosterone concentrations do not cross the placenta to directly suppress fetal growth but affects amino acid nutrient delivery to the fetus by downregulating specific amino acid transporter activity.  相似文献   

16.
The objective of this study was to determine whether fetal urinary excretion is a major route of ethanol transfer into the amniotic fluid surrounding the fetus following maternal administration of ethanol. Conscious instrumented pregnant ewes between 130 and 137 days' gestation (term, 147 days) with (n = 3) or without (n = 3) a catheter in the fetal bladder were administered 1 g ethanol/kg maternal body weight as a 1-h maternal intravenous infusion. Maternal blood, fetal blood, and amniotic fluid samples were collected at selected times, and fetal urine was collected continuously from the bladder-cannulated fetus during the 14-h study for the determination of ethanol concentrations. Fetal urinary excretion of ethanol occurred, and the total amount of ethanol excreted represented 0.30 +/- 0.07 (SD)% of the maternal ethanol dose. The renal clearance of ethanol by the fetus was 0.43 +/- 0.06 mL/min. The pharmacokinetics of ethanol in the maternal-fetal unit and the amniotic fluid for the bladder-cannulated fetal preparation were similar to the data for the nonbladder-cannulated preparation. The data indicate that fetal urinary excretion of ethanol is a secondary route of ethanol transfer into the amniotic fluid. It would appear that diffusion of ethanol across membranes from the maternal and fetal circulations is a major route of ethanol transfer into this intrauterine compartment.  相似文献   

17.
Maternal administration of DDAVP induces maternal and fetal plasma hyponatremia, accentuates fetal urine flow, and increases amniotic fluid volume. Fetal hemorrhage represents an acute stress that results in fetal AVP secretion and reduced urine flow rate. In view of the potential therapeutic use of DDAVP for pregnancies with reduced amniotic fluid volume, we sought to examine the impact of maternal hypotonicity during acute fetal hemorrhage. Chronically catheterized pregnant ewes (130 +/- 2 days) were allocated to control or to DDAVP-induced hyponatremia groups. In the latter group, tap water (2,000 ml) was administered intragastrically to the ewe followed by DDAVP (20 microg bolus, 4 microg/h) and a maintenance intravenous infusion of 5% dextrose water for 4 h to achieve maternal hyponatremia of 10-12 meq/l. Thereafter, ovine fetuses from both groups were continuously hemorrhaged to 30% of estimated blood volume over a 60-min period. DDAVP caused similar degree of reductions in plasma sodium and osmolality in pregnant ewes and their fetuses. In response to hemorrhage, DDAVP fetuses showed greater reduction in hematocrit than control fetuses (14 vs. 10%). Both groups of fetuses demonstrated similar increases in plasma AVP concentration. However, the AVP-hemorrhage threshold was greater in DDAVP fetuses (22.5%) than in control (17.5%). Hemorrhage had no significant impact on plasma osmolality, electrolyte levels, or cardiovascular responses in either group of fetuses. Despite similar increases in plasma AVP, DDAVP fetuses preserved fetal urine flow rates, with values threefold those of control fetuses. These results suggest that under conditions of acute fetal stress of hemorrhage, maternal DDAVP may preserve fetal urine flow and amniotic fluid volume.  相似文献   

18.
Premature induction of delivery in fetuses infused with graded doses of cortisol was brought about in 123.5 +/- 7.7 h (mean +/- SEM, n = 6) after the start of cortisol infusion. This treatment caused a rise in fetal plasma cortisol similar to that observed at normal delivery. Maternal and fetal progesterone and 20 alpha-dihydroprogesterone concentrations decreased to basal levels during infusion of cortisol to the fetus. Induction of premature delivery was delayed or prevented by concomitant treatment of the ewe with progestagen. Maternal intramuscular injection of 100 mg progesterone, 2 times daily, prevented delivery in four of four ewes treated during the time that cortisol was infused into the fetus (11-13 days). Maternal plasma progesterone and 20 alpha-dihydroprogesterone concentrations were maintained during this period, but fetal plasma progesterone concentrations decreased to the same extent as in the fetuses infused with cortisol alone. A single intramuscular injection of 250 mg of medroxyprogesterone acetate to ewes on the day before commencement of infusion of cortisol to the fetus prevented delivery in four of six ewes during the time that cortisol was infused for 9, 13, 14, and 15 days, respectively. One ewe delivered a live lamb at 133.5 h and another at 147.7 h after the start of infusion of cortisol to the fetus. Maternal and fetal plasma cortisol, progesterone, and 20 alpha-dihydroprogesterone concentrations were similar to those observed during infusion of cortisol alone to the fetus. Although fetal cortisol concentrations rose in a similar fashion, and to a similar extent, in all three groups during infusion of cortisol to the fetus, fetal 11-desoxycortisol concentrations only rose above basal levels close to the time of delivery in cortisol-infused fetuses or, in the progestagen-treated groups, when the fetus showed signs of being stressed.  相似文献   

19.
20.
Prenatal multiple micronutrient (MM) supplementation improves birth weight through increased fetal growth and gestational age, but whether maternal or fetal growth factors are involved is unclear. Our objective was to examine the effect of prenatal MM supplementation on intrauterine growth factors and the associations between growth factors and birth outcomes in a rural setting in Bangladesh. In a double-blind, cluster-randomized, controlled trial of MM vs. iron and folic acid (IFA) supplementation, we measured placental growth hormone (PGH) at 10 weeks and PGH and human placental lactogen (hPL) at 32 weeks gestation in maternal plasma (n = 396) and insulin, insulin-like growth factor-1 (IGF-1), and IGF binding protein-1 (IGFBP-1) in cord plasma (n = 325). Birth size and gestational age were also assessed. Early pregnancy mean (SD) BMI was 19.5 (2.4) kg/m2 and birth weight was 2.68 (0.41) kg. There was no effect of MM on concentrations of maternal hPL or PGH, or cord insulin, IGF-1, or IGFBP-1. However, among pregnancies of female offspring, hPL concentration was higher by 1.1 mg/L in the third trimester (95% CI: 0.2, 2.0 mg/L; p = 0.09 for interaction); and among women with height <145 cm, insulin was higher by 59% (95% CI: 3, 115%; p = 0.05 for interaction) in the MM vs. IFA group. Maternal hPL and cord blood insulin and IGF-1 were positively, and IGFBP-1 was negatively, associated with birth weight z score and other measures of birth size (all p<0.05). IGF-1 was inversely associated with gestational age (p<0.05), but other growth factors were not associated with gestational age or preterm birth. Prenatal MM supplementation had no overall impact on intrauterine growth factors. MM supplementation altered some growth factors differentially by maternal early pregnancy nutritional status and sex of the offspring, but this should be examined in other studies.

Trial Registration

ClinicalTrials.gov NCT00860470  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号