首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione transferases in the genomics era: new insights and perspectives   总被引:9,自引:0,他引:9  
In the last decade the tumultuous development of "omics" greatly improved our ability to understand protein structure, function and evolution, and to define their roles and networks in complex biological processes. This fast accumulating knowledge holds great potential for biotechnological applications, from the development of biomolecules with novel properties of industrial and medical importance, to the creation of transgenic organisms with new, favorable characteristics. This review focuses on glutathione transferases (GSTs), an ancient protein superfamily with multiple roles in all eukaryotic organisms, and attempts to give an overview of the new insights and perspectives provided by omics into the biology of these proteins. Among the aspects considered are the redefinition of GST subfamilies, their evolution in connection with structurally related families, present and future biotechnological outcomes.  相似文献   

2.
Mechanical biochemistry of proteins one molecule at a time   总被引:1,自引:0,他引:1  
The activity of proteins and their complexes often involves the conversion of chemical energy (stored or supplied) into mechanical work through conformational changes. Mechanical forces are also crucial for the regulation of the structure and function of cells and tissues. Thus, the shape of eukaryotic cells (and by extension, that of the multicellular organisms they form) is the result of cycles of mechanosensing, mechanotransduction, and mechanoresponse. Recently developed single-molecule atomic force microscopy techniques can be used to manipulate single molecules, both in real time and under physiological conditions, and are ideally suited to directly quantify the forces involved in both intra- and intermolecular protein interactions. In combination with molecular biology and computer simulations, these techniques have been applied to characterize the unfolding and refolding reactions in a variety of proteins. Single-molecule mechanical techniques are providing fundamental information on the structure and function of proteins and are becoming an indispensable tool to understand how these molecules fold and work.  相似文献   

3.
Dissecting complex cellular processes requires the ability to track biomolecules as they function within their native habitat. Although genetically encoded tags such as GFP are widely used to monitor discrete proteins, they can cause significant perturbations to a protein's structure and have no direct extension to other classes of biomolecules such as glycans, lipids, nucleic acids and secondary metabolites. In recent years, an alternative tool for tagging biomolecules has emerged from the chemical biology community--the bioorthogonal chemical reporter. In a prototypical experiment, a unique chemical motif, often as small as a single functional group, is incorporated into the target biomolecule using the cell's own biosynthetic machinery. The chemical reporter is then covalently modified in a highly selective fashion with an exogenously delivered probe. This review highlights the development of bioorthogonal chemical reporters and reactions and their application in living systems.  相似文献   

4.
Rapid progress of separation techniques as well as methods of structural analysis provided conditions in the past decade for total screening of complex biologic mixtures for any given class of biomolecules. The present review updates the reader with the modern state of peptidomics, a chapter of chemical biology that deals with structure and biologic properties of sets of peptides present in biologic tissues, cells or fluids. Scope and limitations of currently employed experimental techniques are considered and the main results are outlined. Considerable attention will be afforded to the biologic role of peptides formed in vivo by proteolysis of nonspecialized precursor proteins with other well-defined functions. In conclusion, the connection is discussed between peptidomics and the much more mature and still closely related field of proteomics.  相似文献   

5.
Rapid progress of separation techniques as well as methods of structural analysis provided conditions in the past decade for total screening of complex biologic mixtures for any given class of biomolecules. The present review updates the reader with the modern state of peptidomics, a chapter of chemical biology that deals with structure and biologic properties of sets of peptides present in biologic tissues, cells or fluids. Scope and limitations of currently employed experimental techniques are considered and the main results are outlined. Considerable attention will be afforded to the biologic role of peptides formed in vivo by proteolysis of nonspecialized precursor proteins with other well-defined functions. In conclusion, the connection is discussed between peptidomics and the much more mature and still closely related field of proteomics.  相似文献   

6.
Total chemical synthesis and semisynthesis of proteins have become widely used tools to alter and control the chemical structure of soluble proteins, Thus, offering unique possibilities to understand protein function in vitro and in vivo. However, these approaches rely on our ability to produce and chemoselectively link peptide segments with each other or with recombinantly produced protein segments. Access to integral membrane and membrane-associated proteins via these approaches has been hampered by the fact that integral membrane peptides or lipid-modified peptides are difficult to obtain mostly due to incomplete amino acid coupling reactions and their poor handling properties. This article will highlight the advances in the total chemical synthesis and semisynthesis of small viral as well as bacterial ion channels. Recent synthesis approaches for membrane-associated proteins will be discussed as well.  相似文献   

7.
The belief in the Darwinian theory of evolution appeared to be shaken when one tried to interpret statements of molecular biology in it. As a consequence there arose a theory of non-Darwinian neutral evolution. The supporters of this theory believe that under natural conditions no factors exist which can distinguish and select organisms on their internal (molecular) structure. In the opinion of these neutralists natural selection cannot in principle control the molecular constitution of organisms. Contrary to the viewpoint of the critics of neutralism it is impossible to admit that nucleic acids, proteins and other biomolecules can evolve without the participation of natural selection. This controversy in contemporary theoretical biology can be solved by integrating the conceptions of molecular ecology with Darwinian theory. Molecular ecology acknowledges the interactions of organisms by means of chemical substances synthesized by them. Such chemical ecological factors play a leading part in the selective stages of biomolecular evolution. These diverse chemical ecological interrelations take place intensively when living beings interact with parasitic microbes.  相似文献   

8.
Structures and functions of the sugar chains of glycoproteins.   总被引:24,自引:0,他引:24  
Most proteins within living organisms contain sugar chains. Recent advancements in cell biology have revealed that many of these sugar chains play important roles as signals for cell-surface recognition phenomena in multi-cellular organisms. In order to elucidate the biological information included in the sugar chains and link them with biology, a novel scientific field called 'glycobiology' has been established. This review will give an outline of the analytical techniques for the structural study of the sugar chains of glycoproteins, the structural characteristics of the sugar chains and the biosynthetic mechanism to produce such characteristics. Based on this knowledge, functional aspects of the sugar chains of glycohormones and of those in the immune system will be described to help others understand this new scientific field.  相似文献   

9.
In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and funciotnal homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.  相似文献   

10.
While innovations in modern microscopy, spectroscopy, and nanoscopy techniques have made single molecule observation a standard in many laboratories, the actual design of meaningful fluorescence reporter systems now hinders major scientific breakthroughs. Even though the field of chemical biology is supercharging the fluorescence toolbox, surprisingly few strategies exist that make the transition from model systems to biologically relevant applications. At the same time, the number of microscopy techniques is growing dramatically. We explain our view on how the impact of modern technologies is influenced not only by further hard‐ and software developments, but also by the availability and suitability of protein‐engineering tools. We identify how the largely independent research fields of chemical biology and fluorescence nanoscopy can influence each other to synergistically drive future technology that can visualize the localization, structure, and dynamics of molecular function without constraints.  相似文献   

11.
NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes. Each method has unique strengths and weaknesses. While the two techniques are highly complementary, they have generally been used separately to address the structure and functions of biomolecular complexes. In this review, we emphasize that the combination of NMR spectroscopy and X-ray crystallography offers unique power for elucidating the structures of complicated protein assemblies. We demonstrate, using several recent examples from our own laboratory, that the exquisite sensitivity of NMR spectroscopy in detecting the conformational properties of individual atoms in proteins and their complexes, without any prior knowledge of conformation, is highly valuable for obtaining the high quality crystals necessary for structure determination by X-ray crystallography. Thus NMR spectroscopy, in addition to answering many unique structural biology questions that can be addressed specifically by that technique, can be exceedingly powerful in modern structural biology when combined with other techniques including X-ray crystallography and cryo-electron microscopy.  相似文献   

12.
Synthetic binding proteins are constructed using nonantibody molecular scaffolds. Over the last two decades, in‐depth structural and functional analyses of synthetic binding proteins have improved combinatorial library designs and selection strategies, which have resulted in potent platforms that consistently generate binding proteins to diverse targets with affinity and specificity that rival those of antibodies. Favorable attributes of synthetic binding proteins, such as small size, freedom from disulfide bond formation and ease of making fusion proteins, have enabled their unique applications in protein science, cell biology and beyond. Here, we review recent studies that illustrate how synthetic binding proteins are powerful probes that can directly link structure and function, often leading to new mechanistic insights. We propose that synthetic proteins will become powerful standard tools in diverse areas of protein science, biotechnology and medicine.  相似文献   

13.
This review is devoted to the challenging direction of modern molecular biology and bioengineering—the properties of alternative scaffold proteins (ASP) and methods for obtaining ASP binding molecules. ASP binding molecules are a combination of conservative protein cores and hypervariable regions that provide the function of specific binding of the ligand. Structural classification of ASPs includes several types that differ in their molecular targets and potential applications. Construction of artificial binding proteins on the basis of ASPs includes a combinatorial library design with subsequent selection of high-affinity variants by phage display or the more modern cell-free systems. Binding molecules on the basis of ASPs are widely used in various fields of biotechnology and molecular medicine.  相似文献   

14.
Following the complete genome sequencing of an increasing number of organisms, structural biology is engaging in a systematic approach of high-throughput structure determination called structural genomics to create a complete inventory of protein folds/structures that will help predict functions for all proteins. First results show that structural genomics will be highly effective in finding functional annotations for proteins of unknown function.  相似文献   

15.
One of the grand challenges in chemical biology is identifying a small-molecule modulator for each individual function of all human proteins. Instead of targeting one protein at a time, an efficient approach to address this challenge is to target entire protein families by taking advantage of the relatively high levels of chemical promiscuity observed within certain boundaries of sequence phylogeny. We recently developed a computational approach to identifying the potential protein targets of compounds based on their similarity to known bioactive molecules for almost 700 targets. Here, we describe the direct identification of novel antagonists for all four adenosine receptor subtypes by applying our virtual profiling approach to a unique synthesis-driven chemical collection composed of 482 biologically-orphan molecules. These results illustrate the potential role of in silico target profiling to guide efficiently screening campaigns directed to discover new chemical probes for all members of a protein family.  相似文献   

16.
17.
Functional screening can reveal a hidden function of a gene. cDNA library-based functional screening has flourished in various fields of biology so far, such as cancer biology, developmental biology and neuroscience. In the postgenomic era, however, various sequence database and public full-length cDNA resources are available, which now allow us to perform more straightforward, gene-oriented screening. Furthermore, the advent of RNA interference techniques has made it possible to perform effective loss-of-function screening. Gene-based functional screening is able to bridge the gap between genes and biological phenomena and raise important biological questions which should be tackled by integration of 'omic' datasets. These possible roles of functional screening will become more and more important in modern molecular biology moving toward the system level understanding of living organisms.  相似文献   

18.
Quinone methides (QMs) are transient reactive species that can be efficiently generated from stable precursors under a variety of biocompatible conditions. Due to their electrophilic nature, QMs have been widely explored as cross-linking agents of DNA and proteins under physiological conditions. However, QMs also have a diene character and can irreversibly react via Diels-Alder reaction with electron-rich dienophiles. This particular reactivity has been recently exploited to label biomolecules with fluorophores in living cells.QMs are characterised by two unique properties that make them ideal candidates for chemical biology applications: i) they can be efficiently generated in situ from very stable precursors by means of bio-orthogonal protocols ii) they are reversible cross-linking agents, making them suitable for “catch and release” target-enrichment experiments. Nevertheless, there are only few examples reported to date that truly take advantage of QMs unique chemistry in the context of chemical-biology assay development. In this review, we will examine the most relevant examples that illustrate the benefit of using QMs for chemical biology purposes and we will anticipate novel approaches to further their applications in biologically relevant contexts.  相似文献   

19.
Amphipols are amphipathic polymers that stabilize membrane proteins isolated from their native membrane. They have been functionalized with various chemical groups in the past years for protein labeling and protein immobilization. This large toolbox of functionalized amphipols combined with their interesting physico-chemical properties give opportunities to selectively add multiple functionalities to membrane proteins and to tune them according to the needs. This unique combination of properties makes them one of the most versatile strategies available today for exploiting membrane proteins onto surfaces for various applications in synthetic biology. This review summarizes the properties of functionalized amphipols suitable for synthetic biology approaches.  相似文献   

20.
Moonlighting--the performance of more than one function by a single protein--is becoming recognized as a common phenomenon with important implications for systems biology and human health. The different functions of a moonlighting protein may use different regions of the protein structure, or alternative structures that occur due to post-translational modifications and/or differences in binding partners. Often the different functions of moonlighting proteins are used at different times or in different places. The existence of moonlighting functions complicates efforts to understand metabolic and regulatory networks, as well as physiological and pathological processes in organisms. Because moonlighting functions can play important roles in disease processes, an improved understanding of moonlighting proteins will provide new opportunities for pharmacological manipulations that specifically target a function involved in pathology while sparing physiologically important functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号