首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the successful development of a high-affinity fluorophore-estradiol conjugate, the fluorophore must be attached to the estradiol molecule at a position that interferes least with its binding to the receptor. We have concentrated on 17 alpha substituents as models for fluorophore attachment, based on literature precedent and on our earlier work with small 17 alpha side chains. In this report, we describe syntheses and estrogen receptor binding affinities of 19 analogs of estradiol substituted in the 17 alpha position with larger side chains (of six to 11 carbons), some of which may be synthetically modified to link a fluorophore. These analogs were synthesized either by nucleophilic cleavage of estrone-17 beta-oxirane 3-benzyl ether and subsequent debenzylation (4 to 18), by cross-coupling of alkynes (21 to 24), by alkylation of 17 alpha-ethynylestradiol 3,17-bis(tetrahydropyranyl ether) and subsequent acidic hydrolysis (25 to 28), or by reacting estrone either with appropriate aryl/alkynyllithium reagents (29, 30, and 32) or with benzylmagnesium bromide (31). Relative binding affinities of these newly synthesized analogs were determined for estrogen receptor (rat uterus) using a standard competition assay. The results suggest that analogs with reduced mobility and/or more polarizable electron density in the side chain generally bind more strongly to the receptor. The relative affinities of several selected compounds were also determined in the presence of 4% dimethylformamide; some compounds bearing larger, nonpolar 17 alpha substituents showed dramatically improved affinities, while affinities for compounds with shorter nonpolar side chains remained largely unchanged. These binding affinity results should be useful in designing new high-affinity fluorescent ligands for the estrogen receptor.  相似文献   

2.
High binding affinity for estrogen receptor and the appearance of estrogenic activity require a phenolic ring and an appropriate hydrophobic group adjacent to the phenolic ring. A quantitative structure-activity relationship analysis based on the values of logP and the pK(a) of the phenolic group showed that the hydrophobicity of these compounds is highly correlated to the estrogen receptor alpha (ERalpha)-binding affinity. These results should be useful for application of these spherical boron clusters (dicarba-closo-dodecaboranes; carboranes) as hydrophobic pharmacophores in drug design, as well as for microscopic analysis of ER-ligand interactions.  相似文献   

3.
In the present report, a method based on chip-based nanoelectrospray mass spectrometry (nanoESI-MS) is described to detect noncovalent ligand binding to the human estrogen receptor alpha ligand-binding domain (hERalpha LBD). This system represents an important environmental interest, because a wide variety of molecules, known as endocrine disruptors, can bind to the estrogen receptor (ER) and induce adverse health effects in wildlife and humans. Using proper experimental conditions, the nanoESI-MS approach allowed for the detection of specific ligand interactions with hERalpha LBD. The relative gas-phase stability of selected hERalpha LBD-ligand complexes did not mirror the binding affinity in solution, a result that demonstrates the prominent role of hydrophobic contacts for stabilizing ER-ligand complexes in solution. The best approach to evaluate relative solution-binding affinity by nanoESI-MS was to perform competitive binding experiments with 17beta-estradiol (E2) used as a reference ligand. Among the ligands tested, the relative binding affinity for hERalpha LBD measured by nanoESI-MS was 4-hydroxtamoxifen approximately diethylstilbestrol > E2 > genistein > bisphenol A, consistent with the order of the binding affinities in solution. The limited reproducibility of the bound to free protein ratio measured by nanoESI-MS for this system only allowed the binding constants (K(d)) to be estimated (low nanomolar range for E2). The specificity of nanoESI-MS combined with its speed (1 min/ligand), low sample consumption (90 pmol protein/ligand), and its sensitivity for ligand (30 ng/mL) demonstrates that this technique is a promising method for screening suspected endocrine disrupting compounds and to qualitatively evaluate their binding affinity.  相似文献   

4.
5.
Melatonin blocks the activation of estrogen receptor for DNA binding.   总被引:5,自引:0,他引:5  
The present study shows that melatonin prevents, within the first cell cycle, the estradiol-induced growth of synchronized MCF7 breast cancer cells. By using nuclear extracts of these cells, we first examined the binding of estradiol-estrogen receptor complexes to estrogen-responsive elements and found that the addition of estradiol to whole cells activates the binding of the estrogen receptor to DNA whereas melatonin blocks this interaction. By contrast, melatonin neither affects the binding of estradiol to its receptor nor the receptor nuclear localization. Moreover, we also show that addition of estradiol to nuclear extracts stimulates the binding of estrogen receptor to DNA, but this activation is also prevented by melatonin. The inhibitory effect caused by melatonin is saturable at nanomolar concentrations and does not appear to be mediated by RZR nuclear receptors. The effect is also specific, since indol derivatives do not cause significant inhibition. Furthermore, we provide evidence that melatonin does not interact with the estrogen receptor in the absence of estradiol. Together, these results demonstrate that melatonin interferes with the activation of estrogen receptor by estradiol. The effect of melatonin suggests the presence of a receptor that, upon melatonin addition, destabilizes the binding of the estradiol-estrogen receptor complex to the estrogen responsive element.  相似文献   

6.
We have studied the interactions of four fluorescent steroid conjugates with either the estrogen or progesterone receptor, both in whole cells and cell-free receptor preparations. The fluorophore, nitrobenzoxadiazole (NBD), was conjugated with a synthetic progestin, with a steroidal estrogen, a non-steroidal estrogen, and with an antiestrogen. With all compounds, receptor-specific binding could be detected by fluorescence measurements following extraction from the protein into an organic solvent. In the native state, however, the NBD-ligand-receptor complex is essentially non-emissive, although these ligands fluoresce strongly when associated with non-specific binders such as albumin. The binding site concentrations and relative affinities determined by fluorescence (after extraction) correspond well with those determined by [3H]estradiol or [3H]R5020 binding to their respective receptors. In T47D breast cancer cells, the NBD-progestin showed receptor-mediated uptake and nuclear localization. These compounds have provided valuable information about the interactions of low and medium affinity ligands with their receptors; however, the successful use of fluorescent ligands for detecting steroid receptors under native-bound conditions, by "imaging" modalities (fluorescence microscopy and flow cytometry) will require the development of fluorophores that are emissive while receptor bound or assay protocols that enable the environment of ligands associated with the receptor to be controlled.  相似文献   

7.
A series of xanomeline analogs were synthesized and evaluated for binding at the M(1) muscarinic acetylcholine receptor (M(1) receptor). Specifically, compounds that substitute the O-hexyl chain of xanomeline with polar, ionizable, or conformationally restricted moieties were assessed for their ability to bind to the M(1) receptor in a wash-resistant manner (persistent binding). From our screen, several novel ligands that persistently bind to the M(1) receptor with greater affinity than xanomeline were discovered. Results indicate that persistent binding may arise not only from hydrophobic interactions but also from ionic interactions with a secondary M(1) receptor binding site. Herein, a qualitative model that accounts for both binding scenarios is proposed and applied to understand the structural basis to wash-resistant binding and long-acting effects of xanomeline-based compounds.  相似文献   

8.
雌激素或类雌激素活性物质通过细胞核雌激素受体(nuclear estrogen receptor, nER)通路发挥相应的生理性作用。当这些配体被nER的配体结合域(ligand binding domain, LBD)识别后进入疏水性配体结合空腔内并引起受体构象发生改变,使得原先处于高度活动性的helix 12(H12)被固定从而进一步稳定空腔结构|同时nER也能通过招募一系列辅助调节因子及其他共调节蛋白质,最终调控基因转录。但是,由于不同的配体和受体结合形成的晶体结构并不完全相同,导致这些复合体具有不同的性质,从而影响基因的转录活性。本文综述了nER配体结合域及结合配体后形成的相应晶体结构与活性以及不同配体对受体结构和基因转录的影响。  相似文献   

9.
We first report the application of 3-acyl-5-hydroxybenzofurans as a scaffold to develop potential drugs for breast cancer. Seven novel derivative compounds were synthesized by using a microwave-assisted synthesis method. Those compounds exhibited different antiproliferation against human breast cancer MCF-7 cells, with the best activity of IC50 = 43.08 μM for compound 1. A Quantum Mechanics Polarized Ligand Docking (QPLD) study was carried out to investigate the binding interactions between these compounds and estrogen receptor alpha (ERα). The simulation results showed that the trend of receptor–ligand binding interactions was same as that of their antiproliferative activities. A detailed analysis indicated that compound 1 possesses the highest Van der Waals and hydrogen bond interactions compared to the other six compounds and better inhibitors are achievable by enhancing the hydrogen bond interactions. Based on these results, we addressed that 3-acyl-5-hydroxybenzofuran is an attractive scaffold for designing drugs against breast cancer.  相似文献   

10.
11.
Estrogen and progesterone or estrogen and glucocorticoid receptors functionally cooperate in gene activation if their cognate binding sites are close to one another. These interactions have been described as synergism of action of the steroid receptors. The mechanism by which synergism is achieved is not clear, although protein-protein interaction of the receptors is one of the favorite models. In transfection experiments with receptor expression vectors and a reporter gene containing estrogen and progesterone-glucocorticoid receptor binding sites, we have examined the effects that different portions of the various receptors have on synergism. N-terminal domains of the chicken progesterone and human glucocorticoid receptors, when deleted, abolished the synergistic action of these receptors with the estrogen receptor. Deletion of the carboxy-terminal amino acids 341 to 595 of the estrogen receptor produced a mutant receptor that could not trans-activate on its own. This mutant receptor did not affect the action of the glucocorticoid receptor but functioned synergistically with the progesterone receptor. We therefore conclude that the synergistic action of the receptors for estrogen and progesterone is mechanistically different from the synergistic action of the receptors for estrogen and glucocorticoid.  相似文献   

12.
We have prepared in radiolabeled form (platinum-191) a non-steroidal estrogen platinum-diamine complex (Pt-diamine complex) that is reported to have selective cytostatic activity in estrogen receptor positive mouse mammary tumors. We then studied the interaction of this metal radiolabeled complex with the estrogen receptor in vitro and its distribution in immature rats in vivo. The radiolabeled complex was prepared by incubation of the non-steroidal estrogen diamine with [191Pt](II)Cl(-2)4 (t 1/2 = 2.96 days, sp. act. 7.54 Ci/mmol) in dimethylformamide (DMF)/H2O, followed by purification by HPLC. The final radiolabeled product coeluted with an authentic standard of the unlabeled Pt-diamine complex, with a retention time distinct from those of the precursor diamine and chloroplatinate. In competitive radiometric receptor binding assays with rat uterine estrogen receptor, samples of the unlabeled diamine and Pt-diamine complex have apparent binding affinities of 53 +/- 3% and 32 +/- 11%, respectively, relative to estradiol (RBA = 100% as standard). However, attempts to observe the binding of the 191Pt-diamine complex with the estrogen receptor were complicated by a very high level of non-receptor binding, an irreversible binding to proteins in the receptor preparation, and a degradation of the platinum complex that, in part, releases the diamine. As a result, it is difficult to be certain whether the binding affinity measured for the Pt-diamine complex in the competitive binding assays is due to the complex itself, or whether it arises from diamine released upon degradation of the complex. In tissue distribution studies in immature female rats, much of the 191Pt-diamine complex was deposited in the liver; there was no evidence of selective uptake of this compound by estrogen target tissues. Thus, it is not clear, from these studies, that the observed bioactivity of this complex arises from the interaction of the Pt complex or the diamine ligand with the estrogen receptor.  相似文献   

13.
14.
15.
Depressant drugs are considered to exert their pharmacological effects as a result of membrane interactions determined by their physico-chemical properties. In this study, a correlation was found between lipid solubility and potency of various local anaesthetics, antihistamines, tricyclic antidepressants and phenothiazine tranquilizers as inhibitors of the Na, K-ATPase activity of a microsomal membrane fraction from bovine brain cortex. Depressant drugs such as chlorpromazine, which have the greatest lipid solubilities, were competitive inhibitors of Na activation but noncompetitive toward K activation, whereas drugs such as tetracaine with lower lipid solubilities were competitive inhibitors of K activation but noncompetitive toward Na activation. Drugs with intermediate lipid solubilities were mixed competitive-noncompetitive inhibitors of both Na and K activation. Both chlorpromazine and tetracaine competitively inhibited cation activation by a heterotropic allosteric mechanism, probably mediated through membrane conformational changes. Whereas quaternization or a decrease in the incubation pH interfered with the ability of chlorpromazine to inhibit Na activation in a competitive fashion, these changes did not affect the ability of tetracaine to compete with K activation. In addition Mn, Ca and phosphatidyl serine were very effective non-competitive antagonists of chlorpromazine inhibition of Na, K-ATPase, whereas these agents competitively antagonized tetracaine inhibition to a lesser extent. These data suggest that the more lipid soluble phenothiazines penetrate into and react in hydrophobic areas of the membrane microenvironment, resulting in a membrane perturbation which interferes with Na activation. On the other hand the less lipid soluble local anaesthetics probably act at superficial sites near the membrane surface, resulting in a different membrane perturbation which interferes with the K activation mechanism. It is suggested that lipid solubility may be a significant factor in determining selectivity in the membrane interactions of various pharmacological agents and hence differences in pharmacological activity among different classes of depressant drugs.  相似文献   

16.
Recently determined crystal structures of the complex between immunoglobulin constant regions (Fc) and their Fc-respective receptors (FcR) have revealed the detailed molecular interactions of this receptor-ligand pair. Of particular interest is the contribution of a glycosylation at Asn(297) of the C(H)2 domain of IgG to receptor recognition. The carbohydrate moieties are found outside the receptor.Fc interface in all receptor.Fc complex structures. To understand the role of glycosylation in FcR recognition, the receptor affinities of a deglycosylated IgG1 and its Fc fragment were determined by solution binding studies using surface plasmon resonance. The removal of carbohydrates resulted in a non-detectable receptor binding to the Fc alone and a 15- to 20-fold reduction of the receptor binding to IgG1, suggesting that the carbohydrates are important in the function of the FcgammaRIII. Structurally, the carbohydrates attached to Asn(297) fill the cavity between the C(H)2 domains of Fc functioning equivalently as a hydrophobic core. This may stabilize a favorable lower hinge conformation for the receptor binding. The structure of the complex also revealed the dominance of the lower hinge region in receptor.Fc recognition. To evaluate the potential of designing small molecular ligands to inhibit the receptor function, four lower hinge peptides were investigated for their ability to bind to the receptor FcgammaRIII. These peptides bind specifically to FcgammaRIII with affinities 20- to 100-fold lower than IgG1 and are able to compete with Fc in receptor binding. The results of peptide binding illustrate new ways of designing therapeutic compounds to block Fc receptor activation.  相似文献   

17.
A series of estrogen receptor ligands based on benzothieno[3,2-b]indole were synthesized and their binding affinity for estrogen receptor subtypes (ERalpha and ERbeta) and effects on mouse uterus and bone were evaluated. Some of these compounds showed strong binding affinity to ER and significantly increased the bone mineral density of ovariectomized mice.  相似文献   

18.
Platelet plays essential roles in hemostasis and its dysregulation can lead to arterial thrombosis. P2Y12 is an important platelet membrane adenosine diphosphate receptor, and its antagonists have been widely developed as anti-coagulation agents. The current P2Y12 inhibitors available in clinical practice have not fully achieved satisfactory anti-thrombotic effects, leaving room for further improvement. To identify new chemical compounds as potential anti-coagulation inhibitors, we constructed a three-dimensional structure model of human P2Y12 by homology modeling based on the recently reported G-protein coupled receptor Meleagris gallopavo β1 adrenergic receptor. Virtual screening of the modeled P2Y12 against three subsets of small molecules from the ZINC database, namely lead-like, fragment-like, and drug-like, identified a number of compounds that might have high binding affinity to P2Y12. Detailed analyses of the top three compounds from each subset with the highest scores indicated that all of these compounds beard a hydrophobic bulk supplemented with a few polar atoms which bound at the ligand binding site via largely hydrophobic interactions with the receptor. This study not only provides a structure model of P2Y12 for rational design of anti-platelet inhibitors, but also identifies some potential chemicals for further development.  相似文献   

19.
Radioactively labeled steroids undergo decomposition processes, which are dependent on time, storage conditions (temperature, solvents, etc.), degree of labeling etc. This communication shows that several decomposition products of 17α-ethynyl-11β-methoxy-estradiol-17β (R 2858 0) bind to rat uterine cytosol in a way that would be interpreted as ‘specific receptor binding’ if some of these compounds were present in the ligand solution used for estrogen receptor determination. Thys, the binding was charcoal-resistant and displaceable with an excess of unlabeled R 2858, and the percentage of binding was of significant magnitude to seriously interfere with receptor measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号