首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are mutational artifacts in the Big Blue(R) assay and it is important to characterize the source and nature of these mutations. Differences were reported in the mutation patterns of a small sample of 23 sectored and 91 circular mutant plaques derived from skin using the Big Blue(R) transgenic mouse mutation detection system [G. R. Stuart, N.J. Gorelick, J.L. Andrews, J.G. de Boer, B.W. Glickman, The genetic analysis of lacI mutations in sectored plaques from Big Blue transgenic mice, Environ. Mol. Mutagen 28 (1996) 385-392.]. We have extended these observations by analyzing 46 sectored and 224 circular mutant plaques derived from seven tissues. The frequency of sectored mutant plaques is estimated to be 16% with no significant variation with tissue type. However, the patterns of mutation for sectored mutants and mouse-derived mutations differed significantly (p=0.04). Base substitutions in sectored mutant plaques do not show the asymmetries found in circular mutants consistent with integration of a GC rich transgene into the AT rich mammalian genome. Sectored mutants have mutation patterns consistent with a mixture of mouse, in vitro and Escherichia coli-derived mutations. Data on the relative frequencies of different mutant plaque morphologies suggests that overlapped plaques are substantially contaminated by sectored plaques at recommended plating densities.  相似文献   

2.
To increase efficiency in the Big Blue system, the plating density was increased from 15000 to 30000 or 45000 plaque forming units (pfus) per plate by increasing the density of the E. coli lawn and decreasing individual plaque size. Small plaque size ensured minimal overlap of the plaques. Liver from one 3- and one 25-month-old mouse (low and high mutation frequencies, respectively) was analyzed and neither plating density nor plaque size affected mutant/mutation frequency and pattern. The color intensity of particular mutant plaques was not affected by plaque size or plating density. Optimal sensitivity is achieved by sequencing mutants to calculate the mutation frequency from the mutant frequency and to identify altered patterns of mutation. Detailed effort and cost accounting of the Big Blue system (including mouse handling, DNA extraction, plaque screening, plaque purification, and DNA sequencing) reveals that one-quarter of the total effort is devoted to plating and screening of plates. This effort is reduced two fold with high plating density. The total cost of the Big Blue system is reduced by 17%. The total cost of the High Plating Density Big Blue system is now only 12% more costly than a selectable assay and offers an extensively validated system with a large mutation database representing a decade of effort.  相似文献   

3.
Stuart GR  Oda Y  de Boer JG  Glickman BW 《Genetics》2000,154(3):1291-1300
Mutation frequency and specificity were determined as a function of age in nuclear DNA from liver, bladder, and brain of Big Blue lacI transgenic mice aged 1.5-25 months. Mutations accumulated with age in liver and accumulated more rapidly in bladder. In the brain a small initial increase in mutation frequency was observed in young animals; however, no further increase was observed in adult mice. To investigate the origin of mutations, the mutational spectra for each tissue and age were determined. DNA sequence analysis of mutant lacI transgenes revealed no significant changes in mutational specificity in any tissue at any age. The spectra of mutations found in aging animals were identical to those in younger animals, suggesting that they originated from a common set of DNA lesions manifested during DNA replication. The data also indicated that there were no significant age-related mutational changes due to oxidative damage, or errors resulting from either changes in the fidelity of DNA polymerase or the efficiency of DNA repair. Hence, no evidence was found to support hypotheses that predict that oxidative damage or accumulation of errors in nuclear DNA contributes significantly to the aging process, at least in these three somatic tissues.  相似文献   

4.
5.
The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems. The ease at which iMARS has allowed us to carry out an exhaustive investigation to assess mutation distribution, mutation type, strand bias, target sequences and motifs, as well as predict mutation hotspots provides us with a valuable tool in helping to distinguish true chemically induced hotspots from background mutations and gives a true reflection of mutation frequency.  相似文献   

6.
Sexual selection is a powerful and ubiquitous force in sexual populations. It has recently been argued that sexual selection can eliminate the twofold cost of sex even with low genomic mutation rates. By means of differential male mating success, deleterious mutations in males become more deleterious than in females, and it has been shown that sexual selection can drastically reduce the mutational load in a sexual population, with or without any form of epistasis. However, any mechanism that claims to maintain sexual reproduction must be able to prevent the fixation of an asexual mutant clone with a twofold fitness advantage. Here, I show that despite very strong sexual selection, the fixation of an asexual mutant cannot be prevented under reasonable genomic mutation rates. Sexual selection can have a strong effect on the average mutational load in a sexual population, but as it cannot prevent the fixation of an asexual mutant, it is unlikely to play a key role on the maintenance of sexual reproduction.  相似文献   

7.
The Big Blue® transgenic mouse mutation detection system provides a powerful approach for measuring spontaneous and induced mutations in vivo. The observed mutations may contain a fraction of ex vivo or prokaryotic mutational events. Indeed, a modified, selectable form of the Big Blue® assay seem to generate artifactual mutants under certain circumstances. Herein we review the evidence that circular mutants (i.e., the plaque circumference is at least 50% blue) collected in the standard Big Blue® assay are derived primarily from the mouse. The most direct evidence is the similarity in the types of mutations found in jackpot and nonjackpot mutations. In addition, about half of the spontaneous mutations in the lacI transgene are transitions and transversions at CpG dinucleotides, a mammalian-specific feature. The mutation pattern observed at lacI is consistent with AT mutation pressure operating in a GC rich DNA and approaches that reported for observed germline human factor IX mutations. Furthermore, the spontaneous mutation pattern of circular Big Blue® mutants differs significantly from that of an endogenous lacI gene in E. coli. Pinpoint mutants (a dot of blue color peripherally located in a wild type plaque), which a priori were not expected to be mouse-derived, have a mutation pattern consistent with the mutation pattern of an endogenous E. coli lacI gene. Analysis of induced mutagenesis studies reveals mutation frequencies and patterns for the Big Blue® circular mutants which are comparable to endogenous genes. In reconstruction experiments, blue plaques derived from a superinfection with wild type and mutant phage produced approximately 50% blue and 50% clear plaques on replating. This phenomenon has not been seen when plaques derived from mouse were replated in the Big Blue® assay. Collectively, the evidence strongly supports a murine origin for circular mutants recovered in the standard Big Blue® assay. Validation of current assays is an essential step in determining the frequency and pattern of spontaneous murine-specific mutations. Defining this benchmark will be helpful in evaluating the next generation of transgenic mutation detection systems.  相似文献   

8.
To characterize the nature of multiple mutations in the tissues of an intact animal, the Big Blue transgenic mouse mutation detection system was used to examine 1459 mutants from eight normal tissues and 507 mutants from 11 tumors. Multiple mutations occurred and predominantly doublet mutants were identified (i.e. two mutations within one mutant lacI gene), but multiplets of up to five mutations were observed. The frequency of doublets in normal tissues and spontaneous tumors from p53-deficient mice was enhanced to the same degree (660 and 667 fold, respectively) over that expected for two independent mutational events. Doublets, multiplets and singlets have similar patterns of mutation. The distance between mutations in doublets fits an exponential distribution, not that expected for randomly spaced events, suggesting that many doublets occur in rapid succession within the same cell cycle.  相似文献   

9.
Herein, a detailed protocol for a random mutation capture (RMC) assay to measure nuclear point mutation frequency in mouse tissue is described. This protocol is a simplified version of the original method developed for human tissue that is easier to perform, yet retains a high sensitivity of detection. In contrast to assays relying on phenotypic selection of reporter genes in transgenic mice, the RMC assay allows direct detection of mutations in endogenous genes in any mouse strain. Measuring mutation frequency within an intron of a transcribed gene, we show this assay to be highly reproducible. We analyzed mutation frequencies from the liver tissue of animals with a mutation within the intrinsic exonuclease domains of the two major DNA polymerases, δ and ε. These mice exhibited significantly higher mutation frequencies than did wild-type animals. A comparison with a previous analysis of these genotypes in Big Blue mice revealed the RMC assay to be more sensitive than the Big Blue assay for this application. As RMC does not require analysis of a particular gene, simultaneous analysis of mutation frequency at multiple genetic loci is feasible. This assay provides a versatile alternative to transgenic mouse models for the study of mutagenesis in vivo.  相似文献   

10.
Sunlight ultraviolet A (UVA) irradiation has been implicated in the etiology of human skin cancer. A genotoxic mode of action for UVA radiation has been suggested that involves photosensitization reactions giving rise to promutagenic DNA lesions. We investigated the mutagenicity of UVA in the lacI transgene in Big Blue mouse embryonic fibroblasts. UVA irradiation of these cells at a physiologically relevant dose of 18J/cm(2) caused a 2.8-fold increase in the lacI mutant frequency relative to control, i.e., 12.12+/-1.84 versus 4.39+/-1.99 x 10(-5) (mean+/-S.D.). DNA sequencing analysis showed that of 100 UVA-induced mutant plaques and 54 spontaneously arisen control plaques, 97 and 51, respectively, contained a minimum of one mutation along the lacI transgene. The vast majority of both induced- and spontaneous mutations were single base substitutions, although less frequently, there were also single and multiple base deletions and insertions, and tandem base substitutions. Detailed mutation spectrometry analysis revealed that G:C-->T:A transversions, the signature mutations of oxidative DNA damage, were significantly induced by UVA irradiation (P<0.003). The absolute frequency of this type of mutations was 7.4-fold increased consequent to UVA irradiation as compared to control (3.38 versus 0.454 x 10(-5); P<0.00001). These findings are in complete agreement with those previously observed in the cII transgene of the same model system, and reaffirm the notion that intracellular photosensitization reactions causing promutagenic oxidative DNA damage are involved in UVA genotoxicity.  相似文献   

11.
The lacI gene in Big Blue transgenic rodents has traditionally been used as a surrogate gene for in vivo mutations. Recently, a more efficient and less expensive assay involving direct selection in the smaller lambda cII gene has been developed. Little is known, however, about the comparative sensitivity of the two loci or their influence on the recovered mutation spectrum following mutagen treatment. We have compared the mutation frequency (MF) and mutational spectrum (MS) of lacI and cII from the same DNA samples isolated from the liver of control and dimethylnitrosamine (DMN)-treated mice. A three-fold (p<0.01) increase in the MF was observed at both loci in the DMN-treated group compared to the corresponding control groups. While the DMN-induced mutation spectrum at lacI was significantly different from its corresponding spontaneous mutation spectrum (p<0.001), the mutation spectrum at cII (p>0.28) was not. The mutation spectra at the two loci from the DMN-treated mice resembled each other but the 4, 2.5 and 12-fold increase in the mutation frequency of A:T>T:A transversions, single base deletions and deletions of more than four base pairs, respectively, at lacI, altered the spectra significantly (p<0.007). The number of mutations of these classes at cII was also increased, but the fractions were lower than at lacI. The spontaneous mutation spectra at the cII and lacI loci resembled each other except for the seven-fold increase in G:C相似文献   

12.
The monocyclic aromatic amine 4-chloro-o-phenylenediamine (4-C-o-PDA), a known mutagen and mouse hepatocarcinogen, was tested for its in vivo mutagenic potential in the Big Blue transgenic mouse assay system. Genomic DNA was isolated from liver tissue of control and treated animals and lacI mutants were recovered. In an initial 2-week study 4-C-o-PDA was administered daily per os to groups of male and female C57BL/6 Big Blue mice at doses of 0 and 200 mg/kg for 2 weeks (on working days) followed by a treatment free expression time of 10 days. Only a weak increase in the mutant frequencies in females was observed. In a 26-week study, where 4-C-o-PDA was given to groups of male and female Big Blue mice in feed at dietary concentrations of 0, 5,000 and 10,000 ppm, 4-C-o-PDA was found to induce a pronounced dose-dependent increase in mutant frequencies in either sex. In the present work, we analyzed the mutation spectrum by automated DNA sequencing of lacI mutants from both studies. Following the 2-week administration of 4-C-oT:A transversions in both sexes. In addition, upon 26-week treatment with 4-C-o-PDA, one major DNA adduct was detected by 33P postlabelling and subsequent multidimensional thin layer chromatography. It is concluded that 4-C-oT:A transversions after 26 weeks in feed treatment. This result indicates that the sensitivity of the Big Blue transgenic assay system, in detecting a unique chemically induced mutation spectrum, is dependent on experimental parameters, such as treatment time. The data suggest that the formation of one major DNA adduct upon 4-C-o-PDA treatment may be critical for its mutagenicity.  相似文献   

13.
The cII assay provides an alternative choice to the lacI transgene for mutational studies involving Big Blue(R) transgenic mice and rats, or permits the evaluation of mutational responses in both genes. Here, we compare the mutational response of the cII gene from colon of Big Blue(R) F344 rats treated with a dietary mutagen and animal carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), to those previously determined in the lacI transgene from colon of the same group of animals. A cursory inspection of PhIP-induced mutational spectra (MS) in cII and lacI suggests that the two transgenes respond differently to PhIP-induced mutation. However, a more thorough analysis of the MS in the two transgenes, including consideration of the number of mutational target sequences in each gene and nearest neighbor analyses of mutated nucleotides, indicates that PhIP-induced mutational specificity is similar in both genes. The evaluation of PhIP-induced mutational responses in these two transgenes serves as a model for intergenic mutational analyses.  相似文献   

14.
Studies were carried out on the repair and fixation of premutational damage induced in Haemophilus influenzae by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The studies employed a temperature-sensitive DNA elongation mutant (dna9) and its combinations with mutants defective in pyrimidine dimer excision (uvr1, uvr2) and in recombination (rec1). The dna9 mutant is shown to be leaky, allowing about 1% of the normal rate of DNA synthesis at the restrictive temperature. Repair of premutational lesions was detected by a decline in mutation frequency with increasing delay in DNA replication in dna9 at the restrictive temperature. This repair is unaffected by the pyrimidine dimer excision system. Mutation fixation was detected by the ability of DNA from treated and then lysed cells to transfer mutants to recipient cells by transformation. Some fixation occurred at the restrictive temperature but much less than at the non-restrictive temperature suggesting that an appreciable minority of the mutations resulted from lesions introduced near the replication fork but that the majority of mutations arise from lesions introduced at some distance from the fork, perhaps randomly. The DNA synthesized immediately after MNNG treatment is of lower molecular weight than normal and returns to normal with time. This return is blocked in the rec1 mutant, suggesting that recombination is involved. The possible role of this process in MNNG mutagenesis is discussed.  相似文献   

15.
The generation of expression curves and the evaluation of mutagenic responses of mammalian cells using standard mutagenesis assays can be inaccurate because mutant and wild-type cells are usually mixed during the expression phase. If some mutant progenitors or mutants grow more slowly than the wild-type cells during the expression period, there will be a decrease in the mutant to wild-type ratio with time and the mutant fraction will not accurately represent the number of mutational events that occurred. The mutant fraction may also inaccurately assess the number of mutations if these mutations are expressed over a number of generations during the time before selection. We previously showed that recovery of L5178Y mouse cell mutants is not complete when mutations are allowed to express in suspension because slowly growing mutants and/or mutant progenitors are diluted out during this time (Rudd et al., 1990). In order to more accurately quantitate the mutagenic response of the cells, we developed an in situ procedure which segregates and immobilizes cells during expression. Because of this immobilization, slowly growing mutant progenitors and mutants expressed at different times will have an equal probability of being scored as mutants. Thus, one mutation leads to one mutant colony and the measurement of the mutagenic response of the cells to the chemical accurately reflects the mutational events that occurred. We plated L5178Y tk+/− mouse cells in semisolid medium immediately after treatment. As the cells grew and formed microcolonies, the selective agent TFT was added as an overlay at specified times, permitting only TFTr cells to survive. In this procedure, each mutation was captured as an individual colony; consequently, the measured mutation fraction accurately reflected the mutational events that occurred at the selected locus. In addition, the induced mutant colonies arising in the agar are the result of independent mutational events. We previously described the in situ protocol for L5178Y cells and showed that the spontaneous mutation rate measured was 50-fold greater than when the cells expressed the phenotype in suspension (Rudd et al., 1990). From this we concluded that the slow growth phenotype was expressed before TFT resistance. In the present paper, we evaluate the effect of chemical treatment on the mutation fraction as a function of the time to TFT addition. Using the in situ protocol, we generated expression curves for three nucleotide analogs, 5-azacytidine, TFT and AraC. The numbers of TFTr colonies produced at various times after treatment indicated that chemically-treated cultures had higher mutation fractions than the solvent controls. The maximal differential increase in mutation rate occured between 30 and 60 h for 5-azacytidine and between 20 and 40 h for TFT and AraC. Our results document the feasibility of quantitating induced mutation fractions using the in situ protocol, confirm the mutagenicity of AraC and 5azacytidine and demonstrate the mutagenic activity of TFT at the tk locus. In addition to recovering mutants more accurately than the suspension protocol, the in situ protocol has the advantage of being experimentally less labor and time intensive. Therefore, we believe that this method should be considered for evaluation as an assay to measure the potential mutagenic effects of chemicals in mammalian cells in vitro.  相似文献   

16.
Caffeine, given as a post-treatment to UV-irradiated Chinese hamster cells in vitro, modified the frequency of induced mutations at the ouabain resistance locus. Mutation frequencies were increased when caffeine was added only for the DNA repair and mutation fixation period. When caffeine was added after the DNA repair and mutation fixation period, or immediately after DNA damage and for the entire repair and selection period, mutation frequencies were reduced. A hypothesis, given to explain both results, is that caffeine, by blocking a constitutive “error-free” postreplication repair process, allows an “error-prone” DNA repair process to produce many mutations. Moreover, caffeine, possibly by modifying C-AMP metabolism, causes a repression of induced mutations which, in effect, explains its anti-mutagenic and anti-carcinogenic properties.  相似文献   

17.
J Ryu  J Youn  Y Kim  O Kwon  Y Song  H Kim  K Cho  I Chang 《Mutation research》1999,445(1):127-135
This paper describes the spectrum of mutations induced by 4-nitroquinoline N-oxide (4-NQO) in the lacI target gene of the transgenic Big Blue Rat2 cell line. There are only a few report for the mutational spectrum of 4-NQO in a mammalian system although its biological and genetic effects have been well studied. Big Blue Rat2 cells were treated with 0.03125, 0.0625 or 0.125 microg/ml of 4-NQO, the highest concentration giving 85% survival. Our results indicated that the mutant frequency (MF) induced by 4-NQO was dose-dependent with increases from three- to seven-fold. The DNA sequence analysis of lacI mutants from the control and 4-NQO treatment groups revealed an obvious difference in the spectra of mutations. In spontaneous mutants, transition (60%) mutations, especially G:C-->A:T transition (45%), were most frequent. However, the major type of base substitution after treatment of 4-NQO was transversions (68.8%), especially G:C-->T:A (43.8%), while only 25% of mutants were transitions. These results are consistent with those produced by 4-NQO in other systems and the transgenic assay system will be a powerful tool to postulate more accurately the mechanism of chemical carcinogenesis involved.  相似文献   

18.
The product of the RAD3 gene of Saccharomyces cerevisiae is required for mitotic cell viability and excision repair of UV-induced pyrimidine dimers. Certain rad3 mutant alleles (originally called rem1) increase the rates of both spontaneous mitotic recombination and mutation. The increase in mutation rates is not dependent upon the presence of the RAD6 error-prone pathway. The mutator phenotype suggests that the wild-type RAD3 gene product may be involved in the maintenance of fidelity of DNA replication in addition to its known role in excision repair. To investigate the role that RAD3 might play in mutation avoidance, we have utilized a well-characterized shuttle vector system to study the mutational spectrum occurring in rad3-102 strains and compare it to that seen in RAD3 strains. The results put constraints on the role that the rad-102 mutant gene product must play if the RAD3 protein is a component of the replication complex. Alternatively, the mutational spectrum is consistent with the hypothesis that the rad3-102 mutant protein interferes with postreplication mismatch repair.  相似文献   

19.
Mutation frequency decline (MFD) is an irreversible loss of newly-induced suppressor mutations occurring in excision-proficient Escherichia coli during a short period of incubation in minimal medium before plating on broth- or Casamino acids-enriched selective agar. It is known that MFD of UV-induced mutations may occur before DNA containing pre-mutagenic lesions is replicated, but we conclude that MFD can also occur after the damaged DNA has been replicated on the basis of the following evidence. (1) Mutation fixation in rich medium (i.e., loss of susceptibility to mutation frequency decline) with ethyl methanesulphonate mutagenesis begins immediately, whereas with UV it is delayed for 20--30 min. (2) The delay in mutation fixation after UV can be explained neither by inhibition of DNA replication nor by a delay in the appearance of error-prone repair activity in the irradiated population. (3) MFD at later times after UV irradiation is more rapid and is less strongly inhibited by caffeine than is MFD immediately after irradiation. (4) Excision is virtually complete 20 min after 3 J m-2 UV but at that time virtually all mutations are still susceptible to MFD. We have presented evidence elsewhere that in bacteria there is an alternative error-free excision-dependent type of post-replication repair of potentially mutagenic daughter strand gaps. We suggest that this process is inhibited at tRNA loci in the presence of nutrient broth or Casamino acids, possibly because of a broth-dependent change in the structure of the single-stranded region including the tRNA locus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号