首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Bovine adrenal chromaffin cells were isolated and maintained as primary culture monolayers. Total acetylcholinesterase (AChE) activity in the cells increased during the culture period, and AChE activity appeared in the culture medium. We have examined the role of the AChE synthesized by the cells on ACh-evoked release of catecholamine from the cells. A progressive decrease in the efficacy of ACh (5 × 10-5m ) to evoke release of [3H] norepinephrine from day 3–15 cultures suggests that exogenously applied ACh is hydrolyzed by the nascent AChE synthesized by the cells. These findings provide evidence that chromaffin cells produce AChE and release it into their immediate environment.  相似文献   

2.
Assays for cholinergic properties in cultured rat Schwann cells   总被引:2,自引:0,他引:2  
Cultured rat Schwann cells did not contain detectable levels of choline-acetyltransferase (less than 0.5 pmol ACh min-1 mg-1 of protein) or of acetylcholinesterase and nicotinic acetylcholine receptors. After adding Schwann cells to primary rat myotube cultures, the level of cholineacetyl-transferase in the co-cultures increased after three weeks to as high as 5 pmol ACh min-1 mg-1. The activity appearing in co-cultures sedimented at approximately 4S, and was inhibited 50% by 4(1-napthylvinyl)pyridine in the concentration range of 10-50 microM. After treatment of co-cultures with anti rat neural antigen-1 (RAN-1) and complement, 70-80% of the activity was lost, suggesting that it is induced in the Schwann cells. Attempts to obtain the effect by exposure of Schwann cells to medium conditioned by the myotube cultures, or by co-culture with fibroblasts gave levels of activity at or below the limit of detection.  相似文献   

3.
ACh is the neurotransmitter responsible for increasing sweat rate (SR) in humans. Because ACh is rapidly hydrolyzed by acetylcholinesterase (AChE), it is possible that AChE contributes to the modulation of SR. Thus the primary purpose of this project was to identify whether AChE around human sweat glands is capable of modulating SR during local application of various concentrations of ACh in vivo, as well as during a heat stress. In seven subjects, two microdialysis probes were placed in the intradermal space of the forearm. One probe was perfused with the AChE inhibitor neostigmine (10 microM); the adjacent membrane was perfused with the vehicle (Ringer solution). SR over both membranes was monitored via capacitance hygrometry during microdialysis administration of various concentrations of ACh (1 x 10(-7)-2 M) and during whole body heating. SR was significantly greater at the neostigmine-treated site than at the control site during administration of lower concentrations of ACh (1 x 10(-7)-1 x 10(-3) M, P < 0.05), but not during administration of higher concentrations of ACh (1 x 10(-2)-2 M, P > 0.05). Moreover, the core temperature threshold for the onset of sweating at the neostigmine-treated site was significantly reduced relative to that at the control site. However, no differences in SR were observed between sites after 35 min of whole body heating. These results suggest that AChE is capable of modulating SR when ACh concentrations are low to moderate (i.e., when sudomotor activity is low) but is less effective in governing SR after SR has increased substantially.  相似文献   

4.
J E Hulla  M R Juchau 《Biochemistry》1989,28(11):4871-4879
The purpose of this study was to quantify cytochrome P450IIIA1 in fetal and maternal livers of uninduced and pregnenolone-16 alpha-carbonitrile (PCN) induced rats during the course of prenatal development. The activities and levels of P450IIIA in hepatic microsomes from maternal rats and fetuses at 15-21 days of gestation were measured by triacetyloleandomycin (TAO) inhibited debenzylation of (benzyloxy)phenoxazone and by immunoassay with defined antiserum specific for P450IIIA. P450IIIA was not detectable (less than 10 pmol/mg for maternal microsomes and less than 2 pmol/mg for fetal microsomes) by immunoassay in uninduced maternal or fetal livers. In hepatic microsomes from PCN-induced dams, values ranged from 59.3 to 116 micrograms P450IIIA1/mg of protein during the same gestational period. Changes in debenzylase activity of 15.9-46.5 pmol of resorufin (mg of protein)-1 min-1 were consistent with these findings as were the changes in TAO-inhibitable debenzylase activity. In the transplancentally induced fetal liver, debenzylase activity increased steadily from 0.19 pmol of resorufin mg-1 min-1 at day 15 to 9.34 pmol of resorufin mg-1 min-1 at day 21 and was paralleled by the TAO-inhibitable activity that ranged from 0.09 pmol of resorufin mg-1 min-1 at day 15 to 3.33 pmol of resorufin mg-1 min-1 at day 21. The amount of immunoreactive P450IIIA1 also increased from 0.5 to 28.7 micrograms/mg of microsomal protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.  相似文献   

6.
Abstract: A pharmacological study was made of the effects of various anticholinesterases (anti-ChEs) on the release of [3H]noradrenaline ([3H]NA) evoked by acetylcholine (ACh), nicotine, 56 mM K+, and veratridine from bovine adrenal chromaffin cells in culture. The anti-ChEs chosen were eserine (an inhibitor of both acetylcholinesterase and pseudocholinesterase), 1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284C51) (a specific acetylcholinesterase (AChE) inhibitor), and tetraisopropylprophos-phoramide (iso-OMPA) (a specific pseudocholinesterase inhibitor). Acetylcholinesterase (AChE) activity increased in the cells with time in culture beginning at day 4 and reaching a plateau at day 10. In 9–11-day cultures, both eserine and BW284C51 acted biphasically to increase ACh-induced [3H]NA release from the cells at concentrations of 10?6M or less whereas higher concentrations reduced or abolished the ACh-induced release. However, in earlier cultures (days 3–5), when AChE activity of the cells was low, both eserine and BW284C51 produced only a monophasic dose-dependent inhibition of ACh-evoked [3H]NA release at high concentrations. When the cells were stimulated with nicotine, an agonist not metabolized by cholinesterase a similar monophasic inhibitory response on the [3H]NA release was elicited by eserine and BW284C51, regardless of the age of the cultured cells. When 56 mM K+ or veratridine was used to depolarize the cells, neither eserine nor BW284C51 affected the [3H]NA release from the cells. Unlike eserine and BW284C51, iso-OMPA did not enhance ACh-evoked release in older cultures and at high concentrations (> 10 4M) it produced an inhibition of the [3H]NA release evoked by ACh, nicotine, 56 mM K+, and veratridine. The present results suggest that the stimulatory effect on ACh response by low concentrations of eserine and BW284C51 can be attributed to the protection of ACh against enzymatic hydrolysis, whereas the inhibitory effects produced by higher concentrations of eserine and BW284C51 are thought to be due to an interaction with the nicotinic acetylcholine receptor-ionophore complex.  相似文献   

7.
We examined basal adenosine 3',5'-cyclic monophosphate (cAMP) levels, isoproterenol (ISO)-stimulated cAMP responses, basal cAMP, and guanosine 3',5'-cyclic monophosphate (cGMP) phosphodiesterase (PDE) activities and protein-kinase (PK) activities in trachealis muscle from five Basenji-greyhound (BG) and four greyhound dogs to determine whether the inverse relationship between in vivo and in vitro airway responsiveness could be due to altered cyclic nucleotide metabolism. Basal cAMP levels were not significantly different (PNS) in muscle from BG (11.6 +/- 0.53 pmol/mg protein) and greyhound dogs (10.30 +/- 1.60 pmol/mg protein). The cAMP responses to stimulation with ISO were enhanced in BG compared with greyhound dogs. The low Michaelis constant (1) for Km-cAMP PDE activity (Km = 0.63 microM) was significantly less (P less than 0.005) in BG dogs (1.54 +/- 0.28 pmol.min-1.mg protein-1) than greyhounds (11.76 +/- 2.48). Endogenously active PK activity was significantly greater (P less than 0.005) in BG (54.74 +/- 5.39 pmol.min-1.mg protein-1) than in greyhound dogs (15.50 +/0 2.20). Increases in PK activity with 5 microM cAMP added were not significantly different between BG (14.79 +/- 6.00) and greyhound dogs (7.04 +/- 2.14). Approximately 90% of both endogenous PK activity and cAMP-activated PK activity in BG and greyhound dogs was inhibited by a cAMP-dependent PK inhibitor (PKI'). These data suggest that decreased cyclic nucleotide degradation due to decreased cyclic nucleotide PDE activity with increased PK could account for the in vitro hyporesponsiveness of airway smooth muscle in BG dogs as a protective adaptive mechanism.  相似文献   

8.
The concurrent release of endogenous ACh and GABA from the retina (in the presence of physostigmine) was measured using either an eye-cup preparation in rabbits anaesthetized with urethane or isolated rabbit retinas. There was a spontaneous resting release of ACh and GABA from the dark adapted retina of ca 5 and 160 pmol min-1 respectively. Stimulation of the initially dark adapted retina in vivo with flickering light (0.1-20 Hz) increased the release of ACh by up to 5 times the spontaneous resting release but did not cause a detectable increase in GABA release. The maximum light-evoked release of ACh was about 24 pmol min-1/retina and occurred at a frequency of 10 Hz. However, the maximum release of ACh per flash occurred at 0.1 Hz at which frequency the average ACh release per flash from one amacrine cell was ca 2.35 x 10(-18) mol. Exposure of the retina to the potent inhibitors of GABA uptake, SKF89976A and SKF100330A markedly reduced the resting release of ACh and abolished the light-evoked release of ACh but did not enable a light-evoked release of GABA to be detected. Bicuculline blocked the inhibitory actions of both SKF89976A and SKF100330A on ACh release but the combination of bicuculline and uptake inhibitor did not result in a light-evoked release of GABA. In contrast, KCl (20 mM) applied locally to the retina in vivo resulted in the release of both ACh and GABA (61 and 2.6-fold respectively). KCl (20 mM) also evoked large increases in ACh and GABA release from isolated rabbit retinas in room light (13.5 and 3.4-fold respectively). The K-evoked release of ACh and GABA from the rabbit retina both in vivo and in vitro was calcium dependent. These experiments are the first in which endogenous ACh and GABA release from the retina have been simultaneously measured and suggest that the release mechanisms for these transmitters are fundamentally similar.  相似文献   

9.
本实验在麻醉开胸犬,采用冠状动脉左旋支恒流灌注,于搏动的和心室纤颤(VF)的心脏,研究了电刺激迷走神经(VNS)及冠状动脉内注入乙酰胆碱(ACh)对冠状动脉阻力的影响。当 VNS 和冠脉内给 ACh 时,(1)心肌内小冠状动脉阻力显著减低,而心外膜大冠状动脉阻力并无明显变化;(2)冠状动脉左旋支总阻力的减低幅度在 VF 的心脏比在搏动的心脏显著减小。以上结果表明,迷走-ACh 扩张冠脉的作用主要是舒张心肌内小冠状动脉,并可通过减低心肌收缩力而间接降低冠状动脉阻力。  相似文献   

10.
Mice were injected for 1-2 months daily with 10 mg immunoglobulin G (IgG) from four patients with Lambert-Eaton myasthenic syndrome (LEMS); control mice were injected with pooled human IgG from normal donors. Gastrocnemius muscles were homogenised for the assay of acetylcholine (ACh), choline acetyltransferase (ChAT), and cholinesterase (ChE). The ACh, ChAT, and ChE contents of gastrocnemius muscles from "LEMS mice" were about the same as the control values, which were 180 pmol, 40 nmol X h-1 (37 degrees C), and 15 mumol X h-1 (37 degrees C), respectively. Hemidiaphragms were treated with an irreversible ChE inhibitor (Soman) and incubated at 20 degrees C for estimation of ACh release. Resting ACh release from experimental muscles was reduced by about 25% (P2 less than 0.05) and the release evoked by 3 s-1 nervous stimulation by 50% (P2 less than 0.05). On the other hand, 50 mM KCl-induced transmitter release was not abnormal in LEMS mice. The findings indicate that IgG antibody from patients with LEMS may bind to nerve terminal determinants that are involved in quantal and nonquantal ACh release.  相似文献   

11.
12.
Embryo metabolism is an indicator of viability and, therefore, efficiency of the culture medium. Currently, little is known regarding porcine embryo metabolism. The objective of our study was to evaluate glucose and pyruvate uptake and lactate production in porcine embryos cultured in two different media systems. Oocytes were matured and fertilized according to standard protocols. Embryos were allocated randomly into two culture treatments, NCSU23 medium or G1.2/G2.2 sequential culture media 6-8 h post-insemination (hpi). Embryo substrate utilization was measured at the two-cell (24-30 hpi), 8-cell (80 hpi), morula (120 hpi), and blastocyst (144 hpi) stages using ultramicrofluorimetry. Glucose uptake was higher (P < 0.05) in two-cell embryos cultured in G1.2 than in NCSU23 medium (4.54 +/- 0.71, 2.16 +/- 0.87 pmol/embryo/h, respectively). Embryos cultured in G1.2/G2.2 produced significantly more lactate than those in NCSU23 at the eight-cell stage (9.41 +/- 0.71, 4.42 +/- 0.95 pmol/embryo/hr, respectively) as well as the morula stage (11.03 +/- 2.31, 6.29 +/- 0.77 pmol/embryo/hr, respectively). Pyruvate uptake was higher (P < 0.05) in morula cultured in G1.2/G2.2 versus NCSU23 (22.59 +/- 3.92, 11.29 +/- 1.57 pmol/embryo/h, respectively). Lactate production was greater (P < 0.05) in blastocysts cultured in G1.2/G2.2 (38.13 +/- 15.94 pmol/embryo/h) than blastocysts cultured in NCSU23 (8.46 +/- 2.38 pmol/embryo/h). Pyruvate uptake was also greater in blastocysts cultured in G1.2/G2.2 (24.3 +/- 11.04) than those in NCSU23 (11.30 +/- 2.70). When cultured in NCSU23 medium, two- and eight-cell embryos utilized less glucose than morulae and blastocysts, and two-cell embryos produced less lactate than blastocysts (P < 0.05). In G1.2/G2.2 media, two-cells took up less pyruvate than morulae or blastocysts, while blastocysts produced more lactate and utilized more glucose than two-cell, eight-cell and morula stage embryos (P < 0.05). As in other species, glycolysis appears to be the primary metabolic pathway in post-compaction stage porcine embryos. Culture medium composition affects not only substrate uptake, but also metabolic pathways by which these substrates are utilized in porcine embryos at several developmental stages.  相似文献   

13.
The effects of neuromedin-N on migrating myoelectric complexes in the small intestine of rats were studied. As neuromedin-N and neurotensin are structurally related peptides a comparison with neurotensin was made. Myoelectric activity was recorded by means of three bipolar electrodes implanted into the wall of the small intestine at 5, 15 and 25 cm distal to the pylorus. The peptides were administered as intravenous infusions to fasted conscious rats. Neuromedin-N at doses of 100-800 pmol kg-1 min-1 caused a dose-dependent disruption of the migrating myoelectric complexes and induced irregular spiking activity (n = 7, P less than 0.05). Neurotensin induced a similar response, but at doses of 1.0-8.0 pmol kg-1 min-1 (n = 5, P less than 0.05). Thus, on a molar basis, neuromedin-N appeared to be about 100-times less potent than neurotensin. Hexamethonium (20 mg kg-1 i.v.) inhibited the migrating motor complexes and induced quiescence, but did not block the effect of neuromedin-N at a dose of 800 pmol kg-1 min-1. Atropine (1 mg kg-1 i.v.) and mepyramine (2 mg kg-1 i.v.) did not affect the migrating motor complexes, nor did they block the effect of neuromedin-N. Simultaneous infusion of neuromedin-N and neurotensin in a 1:1 molar ratio at doses of 2 pmol kg-1 min-1 showed inhibition of the response to neurotensin in eight out of ten experiments. In conclusion, neuromedin-N changes the myoelectric activity in the small intestine from a fasting to a fed pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This experiment was designed to investigate whether chronic hypoxia affect rat pulmonary artery (PA) endothelium-dependent relaxation and the content of cGMP in PA. Both ACh and ATP could induce endothelium-dependent relaxation of PA, not prevented by indomethacin, but completely abolished by methylene blue. These results indicated that vasodilatation of PA induced by both ACh and ATP is mediated by EDRF (endothelium-derived relaxing factor). Chronic hypoxia significantly depressed PA endothelium-dependent relaxation. The percent relaxation of IPPA and EPPA by 10(-6) mol/L ACh was 61.3% and 59.2% of those in control, and the percent relaxation of IPPA and EPPA by 1.8 x 10(-5) mol/L ATP was 64.9% and 55.3% respectively of the control. Chronic hypoxia also depressed SNP-induced endothelium-independent relaxation. Chronic hypoxia significantly decreased the content of cGMP in PA. The basic level of cGMP was 51.9 +/- 5.7 (n = 14) in hypoxia group and 84.9 +/- 9.7 (n = 14) pmol/g wet wt. in control group (P less than 0.01). After treatment of PA with ACh (10(-7) mol/L), the content of cGMP was 91.4 +/- 7.3 (n = 5) pmol/g wet wt. in hypoxic group and 240.8 +/- 30.6 (n = 5) pmol/g wet wt. in control group (P less than 0.01). Our data suggest that chronic hypoxia might depress rat pulmonary artery endothelium-dependent relaxation through the inhibition of soluble guanylate cyclase in vascular smooth muscle cells.  相似文献   

15.
In 5 placental homogenates the Km of steroid sulfatase for DHEA sulfate increased from 15.4 in Tris buffer to 26.8 microM in phosphate (both buffers 0.1 M, pH 7.4), P less than 0.05. In 3 pooled ovarian preparations the Km increased from 14.3 microM in Tris to 33.0 microM in phosphate, P less than 0.01. There was no significant difference between the ovarian and placental values for Km in either Tris or phosphate (P greater than 0.5), and the increase in the Km produced by phosphate in ovarian tissue was not significantly different from that in the placenta (P greater than 0.5). In the placentas the Vmax in Tris was 1420 pmol/min/mg protein and this fell to 523 pmol/min/mg protein in phosphate (P less than 0.005). The Vmax was 50-fold higher in the placenta than in the ovary in either Tris or phosphate (both P less than 0.001). In the ovary, the Vmax was 27.6 pmol/min/mg protein in Tris and 11.0 pmol/min/mg protein in phosphate (P less than 0.05). The reduction of Vmax produced by phosphate in the ovary was not significantly different from that in the placenta (P greater than 0.5). The slope of the 1/v vs 1/S plot (Km/Vmax) increased 4.7-fold in the placentas and 5.8-fold in the ovaries in phosphate over that in Tris (both P less than 0.001); the increase in the placentas was not significantly different from that in the ovaries (P greater than 0.5). Phosphate ion acts as a mixed inhibitor of both placental and ovarian steroid sulfatase.  相似文献   

16.
Local and systemic expression of insulin-like growth factor-I (IGF-I) during bone formation was studied using the rat bone marrow ablation model. The temporal expression pattern of IGF-I mRNA in rat femurs was examined. The IGF-I mRNA level was enhanced rapidly after ablation reaching a level threefold greater than basal by day 3 (P < 0.01) and declined to basal or below basal level by day 5. Histological analysis showed that IGF- I immunoreactivity was predominantly associated with the mesenchymal cells at the bone/connective tissue interface and osteoblastic cells at active sites of bone formation. Serum level of IGF-I increased 50 and 130%, respectively (P < 0.005), over the basal level at days 3 and 6. We also investigated the systemic expression of IGF-I in liver and kidney. In contrast, hepatic IGF-I gene expression decreased 37 and 48%, respectively, at days 3 and 6 after marrow ablation (P < 0.001). Kidney IGF-I mRNA levels also fell 13 and 27%, respectively, at days 3 and 6 (P < 0.005). The present findings suggest that locally produced IGF-I during bone formation may not only serve as an autocrine/paracrine factor but also influence systemic expression of IGF-I in other organs.  相似文献   

17.
As a first step in attempting to isolate the Na(+)-dependent System N transporter from rat liver we have investigated the use of prophase-arrested oocytes from Xenopus laevis for the functional expression of rat liver glutamine transporters. Individual oocytes, defolliculated by collagenase treatment, were injected with 50 nl of a 1 mg.ml-1 solution of poly(A)+ RNA (mRNA) isolated from rat liver. 50 microM L-[3H]glutamine uptake was measured 1-5 days post-injection: after 48 h, poly(A)+ RNA-injected oocytes showed a 60 +/- 12% increase in Na(+)-dependent glutamine uptake compared to controls. This increased uptake showed characteristic features of hepatic System N: that is, it tolerated Li(+)-for-Na+ substitution and was inhibited by the System N substrate L-histidine (5 mM) in Li medium, unlike endogenous Na(+)-dependent glutamine transport. In subsequent experiments rat liver poly(A)+ RNA, size-fractionated by density gradient fractionation, was injected into oocytes. Injection of poly(A)+ RNA of 1.9-2.8 kilobases (kb) in size resulted in a significant stimulation of Na(+)-dependent glutamine transport to 0.362 +/- 0.080 pmol.min-1/oocyte from 0.178 +/- 0.060 pmol.min-1/oocyte in vehicle-injected oocytes (p less than 0.01). A lighter fraction, with poly(A)+ RNA of less than 1.9 kilobases size resulted in a similar increase in Na(+)-dependent glutamine uptake which was largely Li(+)-tolerant: Li(+)-stimulated glutamine uptake in oocytes injected with this fraction increased to 0.230 +/- 0.070 pmol.min-1/oocyte from 0.098 +/- 0.029 pmol.min-1/oocyte in controls (p less than 0.05). This enhanced rate of Li(+)-stimulated glutamine uptake was inhibited 28 and 70%, respectively, by 1 and 5 mM L-histidine. Na(+)-independent uptake of glutamine rose by 72 +/- 12% in oocytes injected with poly(A)+ RNA of 2.8-3.6 kb (p less than 0.001). These results demonstrate that glutamine transporters, with characteristics associated with hepatic Systems N, L, and A (or ASC), can be expressed in X. laevis oocytes injected with specific size fractions of rat liver mRNA.  相似文献   

18.
The impact of maternal starvation during Days 17-20 of gestation was examined in 20-day fetal rat brain tissue cultured for 6 days in MEM and 10% adult rat serum. Acetylcholinesterase (AChE) activities were consistently greater in fetal brain cell cultures from starved mothers. When fetal tissues from starved mothers were continuously exposed to 72-h fasted serum, AChE activities increased from 1.03 +/- 0.14 to 1.59 +/- 0.21 mumol/h/mg protein (P less than 0.001). In fetal tissues from fed mothers, lower AChE activities were increased from 0.78 +/- 0.09 to 1.04 +/- 0.07 mumol/h/mg protein (P less than 0.05) when 72-h fasted serum was used to replace the fed serum during incubation. When fetal brain cell cultures from fed mothers were exposed for 6 days to graded concentrations of fed serum (2.5-15%), the activities of AChE fell reciprocally from 1.34 +/- 0.10 to 0.82 +/- 0.12 mumol/h/mg protein (P less than 0.05). The levels of AChE activity in tissues exposed to fasted serum were consistently greater, but fell similarly from 1.62 +/- 0.10 to 0.97 +/- 14 mumol/h/mg protein (P less than 0.01), when serum concentrations were increased from 2.5 to 15%. AChE activities were 30% higher in tissues incubated with cycloheximide 10(-3) M (P less than 0.02). Unlike AChE, fetal brain enolase activities were unaffected by maternal starvation. In fetal brain cell cultures from fed mothers, enolase fell from 1.85 +/- 0.10 to 1.37 +/- 0.12 mumol/min/mg protein following exposure to fasted instead of fed serum (P less than 0.02). In fetal cultures from starved mothers, enolase activities were depressed similarly from 1.76 +/- 0.08 to 1.41 +/- 0.09 mumol/min/mg protein when fasted replaced fed serum (P less than 0.02). Thus, the fetal brain cell cultures appear to maintain enzymatic realignments imposed by maternal starvation for at least 6 days. In addition, serum from fasted animals has significant growth inhibiting properties manifested by heightened activities of AChE and lower activities of enolase.  相似文献   

19.
The effect of i.v. infusions of bombesin and somatostatin, administered either separately or in combination, on migrating myoelectric complexes (MMCs) in the small intestine were studied in conscious, fasted rats. The myoelectrical activity was recorded by means of three bipolar electrodes chronically implanted into the duodenum and jejunum. Infusion of bombesin (0.5, 0.9 and 3 pmol . kg-1 . min-1) interrupted the MMC and induced irregular spiking activity similar to that observed on feeding. Only after the highest dose a consistent inhibition of the MMCs and a significant increase (P less than 0.05) of the spiking activity were achieved at all recording levels. Somatostatin (90 pmol . kg-1 . min-1) did not interrupt the MMC, but reduced significantly the incidence of the activity fronts and spiking activity of the MMCs (P less than 0.05). The effects of bombesin (3 pmol . kg-1 . min-1) on the MMC pattern were inhibited by simultaneous infusion of somatostatin (P less than 0.05). In a second series of experiments, using anesthetized rats, infusion of bombesin (0.5 and 3 pmol . kg-1 . min-1) increased the plasma concentration of neurotensin- gastrin-like immunoreactivities in a dose-dependent manner. The results show that bombesin alters the myoelectrical activity of the small intestine from a fasting to a fed pattern. Since the effect of bombesin was inhibited by the hormone release inhibitor somatostatin, it is suggested that the effect of bombesin on MMC may be secondary to the release of gastrointestinal peptides, such as neurotensin or gastrin.  相似文献   

20.
In a recent publication, we reported that deoxycholic acid is 7 alpha-hydroxylated to yield glycocholate or taurocholate in vivo in the hamster (1987. Kuroki et al. Hepatology. 7: 229-234). In order to explore the possibility that amidation of free deoxycholic acid precedes the 7 alpha-hydroxylation, we assayed 7 alpha-hydroxylase activities of free and conjugated deoxycholates in vitro. 7 alpha-Hydroxylase activities of glycodeoxycholate and taurodeoxycholate were 720 +/- 132 and 640 +/- 160 pmol/mg.min-1, respectively. Activity of 7 alpha-hydroxylation of free deoxycholate was very low (60 +/- 20 pmol/mg.min-1). After treatment with phenobarbital in a dose of 100 mg/kg per day for 6 days, 7 alpha-hydroxylase activities of conjugated deoxycholates were decreased significantly (40%, P less than 0.01, n = 8), whereas that of free deoxycholate was not significantly changed. In the rat, 7 alpha-hydroxylase activities of conjugated deoxycholates were induced significantly (45% increase, P less than 0.05, n = 5) by phenobarbital treatment in sharp contrast to the hamster. There were significant correlations between the 7 alpha-hydroxylase activity of taurodeoxycholate and that of glycodeoxycholate both in the hamster and in the rat (hamsters: n = 16, r = 0.98, P less than 0.01; rats: n = 10, r = 0.82, P less than 0.01). These studies suggested that deoxycholic acid is 7 alpha-hydroxylated after amidation with glycine or taurine in vivo and that the same enzyme may well catalyze the 7 alpha-hydroxylation of glycodeoxycholate and taurodeoxycholate in the hamster.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号