首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
A key target of many intracellular pathogens is the macrophage. Although macrophages can generate antimicrobial activity, neutrophils have been shown to have a key role in host defense, presumably by their preformed granules containing antimicrobial agents. Yet the mechanism by which neutrophils can mediate antimicrobial activity against intracellular pathogens such as Mycobacterium tuberculosis has been a long-standing enigma. We demonstrate that apoptotic neutrophils and purified granules inhibit the growth of extracellular mycobacteria. Phagocytosis of apoptotic neutrophils by macrophages results in decreased viability of intracellular M. tuberculosis. Concomitant with uptake of apoptotic neutrophils, granule contents traffic to early endosomes, and colocalize with mycobacteria. Uptake of purified granules alone decreased growth of intracellular mycobacteria. Therefore, the transfer of antimicrobial peptides from neutrophils to macrophages provides a cooperative defense strategy between innate immune cells against intracellular pathogens and may complement other pathways that involve delivery of antimicrobial peptides to macrophages.  相似文献   

2.
Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While the importance about NO for the control of mycobacterial infection in murine macrophages is well documented, the underlying mechanism has not been revealed yet. In this study we show that IFN-γ induced apoptosis in mycobacteria-infected macrophages, which was strictly dependent on NO. Subsequently, NO-mediated apoptosis resulted in the killing of intracellular mycobacteria independent of autophagy. In fact, killing of mycobacteria was susceptible to the autophagy inhibitor 3-methyladenine (3-MA). However, 3-MA also suppressed NO production, which is an important off-target effect to be considered in autophagy studies using 3-MA. Inhibition of caspase 3/7 activation, as well as NO production, abolished apoptosis and elimination of mycobacteria by IFN-γ activated macrophages. In line with the finding that drug-induced apoptosis kills intracellular mycobacteria in the absence of NO, we identified NO-mediated apoptosis as a new defense mechanism of activated macrophages against M. tuberculosis.  相似文献   

3.
Pathogenic mycobacteria persist and replicate within phagosomes of host phagocytes by inhibiting phagosome maturation at an early endosome stage. The molecular basis for this behavior is not understood. To identify proteins of Mycobacterium tuberculosis unique to the intraphagosomal phase, mycobacteria were purified from phagosomes of infected murine bone marrow-derived macrophages and analyzed by high-resolution 2-DE and MS. Protein patterns of intraphagosomally grown M. tuberculosis were compared with those of broth-cultured mycobacteria. The analysis revealed 11 mycobacterial proteins exclusively detected in intraphagosomal mycobacteria. Some of these proteins are involved in metabolism and cell envelope synthesis, such as the lipid carrier protein Rv1627c, and the conserved hypothetical protein Rv1130 that shows homology to a virulence-associated protein of Legionella pneumophila. The relevance of these proteins as factors enabling intracellular survival of M. tuberculosis is being discussed.  相似文献   

4.
M. tuberculosis and M. leprae are considered to be prototypical intracellular pathogens that have evolved strategies to enable growth in the intracellular phagosomes. In contrast, we show that lysosomes rapidly fuse with the virulent M. tuberculosis- and M. leprae-containing phagosomes of human monocyte-derived dendritic cells and macrophages. After 2 days, M. tuberculosis progressively translocates from phagolysosomes into the cytosol in nonapoptotic cells. Cytosolic entry is also observed for M. leprae but not for vaccine strains such as M. bovis BCG or in heat-killed mycobacteria and is dependent upon secretion of the mycobacterial gene products CFP-10 and ESAT-6. The cytosolic bacterial localization and replication are pathogenic features of virulent mycobacteria, causing significant cell death within a week. This may also reveal a mechanism for MHC-based antigen presentation that is lacking in current vaccine strains.  相似文献   

5.
Mycobacterium marinum is a close relative of the obligate human pathogen Mycobacterium tuberculosis. As with M. tuberculosis, M. marinum causes intracellular infection of poikilothermic vertebrates and skin infection in humans. It is considered a valid model organism for the study of intracellular pathogenesis of mycobacteria. Low transformation efficiencies for this species have precluded approaches using mutant libraries in pathogenesis studies. We have adapted the conditionally replicating mycobacteriophage phAE94, originally developed as a transposon mutagenesis tool for M. tuberculosis, to meet the specific requirements of M. marinum. Conditions permissive for phage replication in M. tuberculosis facilitated highly efficient transposon delivery in M. marinum. Using this technique we succeeded in generating a representative mutant library of this species, and we conclude that TM4-derived mycobacteriophages are temperature-independent suicide vectors for M. marinum.  相似文献   

6.
Yellaboina S  Ranjan S  Vindal V  Ranjan A 《FEBS letters》2006,580(11):2567-2576
Iron dependent regulator, IdeR, regulates the expression of genes in response to intracellular iron levels in M. tuberculosis. Orthologs of IdeR are present in all the sequenced genomes of mycobacteria. We have used a computational approach to identify conserved IdeR regulated genes across the mycobacteria and the genes that are specific to each of the mycobacteria. Novel iron regulated genes that code for a predicted 4-hydroxy benzoyl coA hydrolase (Rv1847) and a protease dependent antibiotic regulatory system (Rv1846c, Rv0185c) are conserved across the mycobacteria. Although Mycobacterium natural-resistance-associated macrophage protein (Mramp) is present in all mycobacteria, it is, as predicted, an iron-regulated gene in only one species, M. avium subsp. paratuberculosis. We also observed an additional iron-regulated exochelin biosynthetic operon, which is present only in non-pathogenic Mycobacterium, M. smegmatis.  相似文献   

7.
Growing evidence suggests that the presence of a subpopulation of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria is responsible for the prolonged duration of tuberculosis treatment. The discovery of new antitubercular agents active against this subpopulation may help in developing new strategies to shorten the time of tuberculosis therapy. Recently, the maintenance of a low level of bacterial respiration was shown to be a point of metabolic vulnerability in Mycobacterium tuberculosis. Here, we describe the development of a hypoxic model to identify compounds targeting mycobacterial respiratory functions and ATP homeostasis in whole mycobacteria. The model was adapted to 1,536-well plate format and successfully used to screen over 600,000 compounds. Approximately 800 compounds were confirmed to reduce intracellular ATP levels in a dose-dependent manner in Mycobacterium bovis BCG. One hundred and forty non-cytotoxic compounds with activity against hypoxic non-replicating M. tuberculosis were further validated. The resulting collection of compounds that disrupt ATP homeostasis in M. tuberculosis represents a valuable resource to decipher the biology of persistent mycobacteria.  相似文献   

8.
Toll-like receptors (TLRs) recognize Mycobacterium tuberculosis (Mtb) or Mtb components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signalling cascades involved in the TLR-initiated immune response to mycobacterial infection. Although both TLR2 and TLR4 have been implicated in host interactions with Mtb, the relationship between specific mycobacterial molecules and various signal transduction pathways is not well understood. This review will discuss recent studies indicating critical roles for mycobacteria and mycobacterial components in regulation of mitogen-activated protein kinases and related signal transduction pathways that govern the outcome of infection and antibacterial defence. To better understand the roles of infection-induced signalling cascades in molecular pathogenesis, future studies are needed to clarify mechanisms that integrate the multiple signalling pathways that are activated by engagement of TLRs by both individual mycobacterial molecules and whole mycobacteria. These efforts will allow for the development of novel diagnostic and therapeutic modalities for tuberculosis that targets the intracellular signalling pathways permitting the replication of this nefarious pathogen.  相似文献   

9.
Dendritic cells (DCs) are likely to play a key role in immunity against Mycobacterium tuberculosis, but the fate of the bacterium in these cells is still unknown. Here we report that, unlike macrophages (Mphis), human monocyte-derived DCs are not permissive for the growth of virulent M. tuberculosis H37Rv. Mycobacterial vacuoles are neither acidic nor fused with host cell lysosomes in DCs, in a mode similar to that seen in mycobacterial infection of Mphis. However, uptake of the fluid phase marker dextran, and of transferrin, as well as accumulation of the recycling endosome-specific small GTPase Rab11 onto the mycobacterial phagosome, are almost abolished in infected DCs, but not in Mphis. Moreover, communication between mycobacterial phagosomes and the host-cell biosynthetic pathway is impaired, given that <10% of M. tuberculosis vacuoles in DCs stained for the endoplasmic reticulum-specific proteins Grp78/BiP and calnexin. This correlates with the absence of the fusion factor N-ethylmaleimide-sensitive factor onto the vacuolar membrane in this cell type. Trafficking between the vacuoles and the host cell recycling and biosynthetic pathways is strikingly reduced in DCs, which is likely to impair access of intracellular mycobacteria to essential nutrients and may thus explain the absence of mycobacterial growth in this cell type. This unique location of M. tuberculosis in DCs is compatible with their T lymphocyte-stimulating functions, because M. tuberculosis-infected DCs have the ability to specifically induce cytokine production by autologous T lymphocytes from presensitized individuals. DCs have evolved unique subcellular trafficking mechanisms to achieve their Ag-presenting functions when infected by intracellular mycobacteria.  相似文献   

10.
We previously reported that macrophage exposure to attenuated strains of pathogenic mycobacteria at multiplicities of infection (MOI) < or = 10 triggers TNF-alpha-mediated apoptosis which reduces the viability of intracellular bacilli. Virulent strains were found to suppress macrophage apoptosis, and it was proposed that apoptosis is an innate defense against intracellular Mycobacterium tuberculosis analogous to apoptosis of virus-infected cells. The potential similarity of host cell responses to intracellular infection with mycobacteria and viruses suggests that M. tuberculosis might lyse infected macrophage when that niche is no longer needed. To investigate this question, we challenged murine macrophages with high intracellular bacillary loads. A sharp increase in cytolysis within 24 h was observed at MOI > or = 25. The primary death mode was apoptosis, based on nuclear morphology and phosphatidyl serine exposure, although the apoptotic cells progressed rapidly to necrosis. Apoptosis at high MOI differs markedly from low MOI apoptosis: it is potently induced by virulent M. tuberculosis, it is TNF-alpha-independent, and it does not reduce mycobacterial viability. Caspase inhibitors failed to prevent high MOI apoptosis, and macrophages deficient in caspase-3, MyD88, or TLR4 were equally susceptible as wild type. Apoptosis was reduced in the presence of cathepsin inhibitors, suggesting the involvement of lysosomal proteases in this novel death response. We conclude that the presence of high numbers of intracellular M. tuberculosis bacilli triggers a macrophage cell death pathway that could promote extracellular spread of infection and contribute to the formation of necrotic lesions in tuberculosis.  相似文献   

11.
12.
维持基因组稳定是生物生存的基础。碱基切除修复(base excision repair,BER)是修复损伤DNA、维持基因组稳定的主要方式之一。碱基切除修复对结核分枝杆菌等胞内致病菌尤其重要。fpg编码碱基切除修复的关键酶。本文通过比较分枝杆菌的基因组,发现结核菌较其他非致病分枝杆菌具有更多的碱基切除修复基因。这提示碱基切除修复可能对结核菌在宿主体内存活和致病至关重要。这条途径也许是新结核病药物研发的重要靶标。  相似文献   

13.
A crucial virulence factor for intracellular Mycobacterium tuberculosis survival is Protein kinase G (PknG), a eukaryotic-like serinethreonine protein kinase expressed by pathogenic mycobacteria that blocks the intracellular degradation of mycobacteria in lysosomes. Inhibition of PknG results in mycobacterial transfer to lysosomes. Withania somnifera, a reputed herb in ayurvedic medicine, comprises a large number of steroidal lactones known as withanolides which show various pharmacological activities. We describe the docking of 26 withanferin and 14 withanolides from Withania somnifera into the three dimensional structure of PknG of M. tuberculosis using GLIDE. The inhibitor binding positions and affinity were evaluated using scoring functions- Glidescore. The withanolide E, F and D and Withaferin - diacetate 2 phenoxy ethyl carbonate were identified as potential inhibitors of PknG. The available drug molecules and the ligand AX20017 showed hydrogen bond interaction with the aminoacid residues Glu233 and Val235. In addition to Val235 the other amino acids, Gly237, Gln238 and Ser239 are important for withanolide inhibitor recognition via hydrogen bonding mechanisms.  相似文献   

14.
Phagocytability and the capacity of intracellular multiplication of Mycobacteria tuberculosis isolated from the patients before the treatment and during it (in 1-5 months and later) were studied in the culture of normal peritoneal guinea pig macrophages. A method of quantitative assessment of the capacity to intracellular reproduction of Mycobacteria tuberculosis by determination of the relative activity index in comparison with the standard strain was elaborated. All the cultures of mycobacteria isolated possessed a different extent of intracellular activity and phagocytability. There proved to be no relationship between the intracellular activity indices and the phagocytability of the strains under study. Mycobacteria tuberculosis cultures isolated from the patients during the treatment possessed higher indices of intracellular activity than the initial cultures isolated before the treatment.  相似文献   

15.
Mycobacterium tuberculosis is a virulent intracellular pathogen that survives in macrophages even in the presence of an intact adaptive immune response. Type I IFNs have been shown to exacerbate tuberculosis in mice and to be associated with disease progression in infected humans. Nevertheless, the mechanisms by which type I IFNs regulate the host response to M. tuberculosis infection are poorly understood. In this study, we show that M. tuberculosis induces an IFN-related gene expression signature in infected primary human macrophages, which is dependent on host type I IFN signaling as well as the mycobacterial virulence factor, region of difference-1. We further demonstrate that type I IFNs selectively limit the production of IL-1β, a critical mediator of immunity to M. tuberculosis. This regulation occurs at the level of IL1B mRNA expression, rather than caspase-1 activation or autocrine IL-1 amplification and appears to be preferentially used by virulent mycobacteria since avirulent M. bovis bacillus Calmette-Guérin (BCG) fails to trigger significant expression of type I IFNs or release of mature IL-1β protein. The latter property is associated with decreased caspase-1-dependent IL-1β maturation in the BCG-infected macrophages. Interestingly, human monocytes in contrast to macrophages produce comparable levels of IL-1β in response to either M. tuberculosis or BCG. Taken together, these findings demonstrate that virulent and avirulent mycobacteria employ distinct pathways for regulating IL-1β production in human macrophages and reveal that in the case of M. tuberculosis infection the induction of type I IFNs is a major mechanism used for this purpose.  相似文献   

16.
Restricting the availability of iron is an important strategy for defense against bacterial infection. Mycobacterium tuberculosis survives within the phagosomes of macrophages; consequently, iron acquisition is particularly difficult for M. tuberculosis, because the phagosomal membrane is an additional barrier for its iron access. However, little is known about the iron transport and acquisition pathways adapted by this microbe in vivo. Extracellular iron sources are usually mobilized by hydrophilic siderophores. Here, we describe direct evidence that mycobactins, the lipophilic siderophores of mycobacteria, efficiently extract intracellular macrophage iron. The metal-free siderophore is diffusely associated with the macrophage membrane, ready for iron chelation. Notably, the mycobactin-metal complex accumulates with high selectivity in macrophage lipid droplets, intracellular domains for lipid storage and sorting. In our experiments, these mycobactin-targeted lipid droplets were found in direct contact with phagosomes, poised for iron delivery. The existence of this previously undescribed iron acquisition pathway indicates that mycobacteria have taken advantage of endogenous macrophage mechanisms for iron mobilization and lipid sorting for iron acquisition during infection. The pathway could represent a new target for the control of mycobacterial infection.  相似文献   

17.
Vaccination of cattle against bovine tuberculosis could be an important strategy for the control of disease either where there is a wildlife reservoir of Mycobacterium bovis infection or in developing countries where it is not economically feasible to implement a 'test and slaughter' control program. Advances in the understanding of protective immune responses to M. bovis infection in cattle and the advent of new molecular biological techniques, coupled with the sequencing of the M. bovis genome have provided opportunities for the rational development of improved tuberculosis vaccines. A number of new tuberculosis vaccines including attenuated M. bovis strains, killed mycobacteria, protein and DNA vaccines are under development and many are being assessed in cattle. Recent results have revealed several promising vaccine candidates and vaccination strategies. Ways of distinguishing between vaccinated and infected cattle are becoming available and the possibility of new approaches to the eradication of tuberculosis from domestic livestock is discussed. Similarities between the mechanisms of protective immunity against M. bovis and against other intracellular parasites continue to be found and discoveries from vaccine studies on bovine tuberculosis may provide helpful insights into requirements for vaccines against other intracellular pathogens.  相似文献   

18.
Persistence of Mycobacterium tuberculosis is a hypoxia-inducible state in which the bacteria are phenotypically insensitive to currently available antituberculous drugs. In humans, persistent M. tuberculosis is found in granulomatous lesions, either inside macrophages or in necrotic tissue, where the partial oxygen pressure (pO(2)) is very low. Persistent bacteria can remain silent for decades before overt tuberculosis develops. Due to insensitivity to classical drugs, M. tuberculosis persistence prevents rapid and definitive clearance of bacteria. Consequently, therapeutic molecules are required that are both active against persistent bacilli and able to reach their intramacrophagic location. In contrast to its native form, norfloxacin is active in vivo against Mycobacterium bovis BCG present in the lungs when temporarily linked to a macromolecular carrier targeted to macrophages. To study the efficiency of this macromolecular prodrug targeted to persistent mycobacteria confined inside macrophages, we established a short-term in vivo model based on the physiological pO(2) differences between lungs, spleen and liver. Whereas lungs and spleen are well oxygenated, the liver has a low pO(2) due to its portal irrigation. Therefore, studying mycobacteria in the liver yields information about in vivo persistent bacilli exposed to low pO(2). To our knowledge, no similar short-term in vivo model has been published to date. Using this model, we demonstrated the insensitivity to isoniazid of M. bovis BCG present in hypoxic sites, and showed that norfloxacin given as a mannosylated macrophage-targeted prodrug was able to kill these isoniazid-insensitive mycobacteria. This demonstrates that intracellular persistent mycobacteria are amenable to antibiotic treatment.  相似文献   

19.
The co-emergence of multidrug resistant pathogenic bacterial strains and the Human Immunodeficiency Virus pandemic has made tuberculosis a leading public health threat. The causative agent is Mycobacterium tuberculosis (Mtu), a facultative intracellular parasite. Mycobacterium leprae (Mle), a related organism that causes leprosy, is an obligate intracellular parasite. Given that different transporters are required for bacterial growth and persistence under a variety of growth conditions, we conducted comparative analyses of transport proteins encoded within the genomes of these two organisms. A minimal set of genes required for intracellular and extracellular life was identified. Drug efflux systems utilizing primary active transport mechanisms have been preferentially retained in Mle and still others preferentially lost. Transporters associated with environmental adaptation found in Mtu were mostly lost in Mle. These findings provide starting points for experimental studies that may elucidate the dependencies of pathogenesis on transport for these two pathogenic mycobacteria. They also lead to suggestions regarding transporters that function in intra- versus extra-cellular growth.  相似文献   

20.
The ability of macrophages to release cytokines is crucial to the host response to intracellular infection. In particular, macrophage-derived TNF plays an important role in the host response to infection with the intracellular pathogen Mycobacterium tuberculosis. In mice, TNF is indispensable for the formation of tuberculous granulomas, which serve to demarcate the virulent bacterium. TNF is also implicated in many of the immunopathological features of tuberculosis. To investigate the role of TNF in the local immune response, we infected human alveolar macrophages with virulent and attenuated mycobacteria. Infection with virulent strains induced the secretion of significantly higher levels of bioactive TNF than attenuated strains correlating with their ability to multiply intracellularly. Treatment of infected macrophages with neutralizing anti-TNF Abs reduced the growth rate of intracellular bacteria, whereas bacterial replication was augmented by addition of exogenous TNF. Infected and uninfected macrophages contributed to cytokine production as determined by double-staining of M. tuberculosis and intracellular TNF. The induction of TNF by human alveolar macrophages at the site of infection permits the multiplication of intracellular bacteria and may therefore present an evasion mechanism of human pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号