首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To examine the influence of vesicular-arbuscular (VA) mycorrhizal fungi on phosphorus (P) depletion in the rhizosphere, mycorrhizal and non-mycorrhizal white clover (Trifolium repens L.) were grown for seven weeks in a sterilized calcareous soil in pots with three compartments, a central one for root growth and two outer ones for hyphae growth. Compartmentation was accomplished by a 30-μm nylon net. The root compartment received a uniform level of P (50 mg kg−1 soil) in combination with low or high levels of P (50 or 150 mg kg−1 soil) in the hyphal compartments. Plants were inoculated withGlomus mosseae (Nicol. & Gerd.) Gerd. & Trappe or remained uninfected. Mycorrhizal inoculation doubled P concentration in shoot and root, and increased dry weight, especially of the shoot, irrespective of P levels. Mycorrhizal contribution accounted for 76% of total P uptake at the low P level and 79% at the high P level, and almost all of this P was delivered by the hyphae from the outer compartment. In the non-mycorrhizal plants, the depletion of NaHCO3-extractable P (Olsen-P) extended about 1 cm into the outer compartment, but in the mycorrhizal plants a uniform P depletion zone extended up to 11.7 cm (the length of the hyphal compartment) from the root surface. In the outer compartment, the mycorrhizal hyphae length density was high (2.5–7 m cm−3 soil) at the various distances (0–11.7 cm) from the root surface. Uptake rate of P by mycorrhizal hyphae was in the range of 3.3–4.3×10−15 mol s−1 cm−1.  相似文献   

2.
An investigation was carried out to test whether the mechanism of increased zinc (Zn) uptake by mycorrhizal plants is similar to that of increased phosphorus (P) acquisition. Maize (Zea mays L.) was grown in pots containing sterilised calcareous soil either inoculated with a mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe or with a mixture of mycorrhizal fungi, or remaining non-inoculated as non-mycorrhizal control. The pots had three compartments, a central one for root growth and two outer ones for hyphal growth. The compartmentalization was done using a 30-m nylon net. The root compartment received low or high levels of P (50 or 100 mg kg–1 soil) in combination with low or high levels of P and micronutrients (2 or 10 mg kg–1 Fe, Zn and Cu) in the hyphal compartments.Mycorrhizal fungus inoculation did not influence shoot dry weight, but reduced root dry weight when low P levels were supplied to the root compartment. Irrespective of the P levels in the root compartment, shoots and roots of mycorrhizal plants had on average 95 and 115% higher P concentrations, and 164 and 22% higher Zn concentrations, respectively, compared to non-mycorrhizal plants. These higher concentrations could be attributed to a substantial translocation of P and Zn from hyphal compartments to the plant via the mycorrhizal hyphae. Mycorrhizal inoculation also enhanced copper concentration in roots (135%) but not in shoots. In contrast, manganese (Mn) concentrations in shoots and roots of mycorrhizal plants were distinctly lower, especially in plants inoculated with the mixture of mycorrhizal fungi.The results demonstrate that VA mycorrhizal hyphae uptake and translocation to the host is an important component of increased acquisition of P and Zn by mycorrhizal plants. The minimal hyphae contribution (delivery by the hyphae from the outer compartments) to the total plant acquisition ranged from 13 to 20% for P and from 16 to 25% for Zn.  相似文献   

3.
N. S. Bolan 《Plant and Soil》1991,134(2):189-207
The beneficial effects of mycorrhizae on plant growth have often been related to the increase in the uptake of immobile nutrients, especially phosphorus (P). In this review the mechanisms for the increase in the uptake of P by mycorrhizae and the sources of soil P for mycorrhizal and non-mycorrhizal plants are examined.Various mechanisms have been suggested for the increase in the uptake of P by mycorrhizal plants. These include: exploration of larger soil volume; faster movement of P into mycorrhizal hyphae; and solubilization of soil phosphorus. Exploration of larger soil volume by mycorrhizal plants is achieved by decreasing the distance that P ions must diffuse to plant roots and by increasing the surface area for absorption. Faster movement of P into mycorrhizal hyphae is achieved by increasing the affinity for P ions and by decreasing the threshold concentration required for absorption of P. Solubilization of soil P is achieved by the release of organic acids and phosphatase enzymes. Mycorrhizal plants have been shown to increase the uptake of poorly soluble P sources, such as iron and aluminium phosphate and rock phosphates. However, studies in which the soil P has been labelled with radioactive 32P indicated that both mycorrhizal and non-mycorrhizal plants utilized the similarly labelled P sources in soil.  相似文献   

4.
 The influence of an arbuscular mycorrhizal (AM) fungus on phosphorus (P) and iron (Fe) uptake of peanut (Arachis hypogea L.) and sorghum (Sorghum bicolor L.) plants was studied in a pot experiment under controlled environmental conditions. The plants were grown for 10 weeks in pots containing sterilised calcareous soil with two levels of Fe supply. The soil was inoculated with rhizosphere microorganisms only or with rhizosphere microorganisms together with an AM fungus (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe). An additional small soil compartment accessible to hyphae but not roots was added to each pot after 6 weeks of plant growth. Radiolabelled P and Fe were supplied to the hyphae compartment 2 weeks after addition of this compartment. After a further 2 weeks, plants were harvested and shoots were analysed for radiolabelled elements. In both plant species, P uptake from the labelled soil increased significantly more in shoots of mycorrhizal plants than non-mycorrhizal plants, thus confirming the well-known activity of the fungus in P uptake. Mycorrhizal inoculation had no significant influence on the concentration of labelled Fe in shoots of peanut plants. In contrast, 59Fe increased in shoots of mycorrhizal sorghum plants. The uptake of Fe from labelled soil by sorghum was particularly high under conditions producing a low Fe nutritional status of the plants. These results are preliminary evidence that hyphae of an arbuscular mycorrhizal fungus can mobilise and/or take up Fe from soil and translocate it to the plant. Accepted: 6 March 1998  相似文献   

5.
Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.  相似文献   

6.
Liu Y  Zhu YG  Chen BD  Christie P  Li XL 《Mycorrhiza》2005,15(3):187-192
We report for the first time some effects of colonization by an arbuscular mycorrhizal (AM) fungus (Glomus mosseae) on the biomass and arsenate uptake of an As hyperaccumulator, Pteris vittata. Two arsenic levels (0 and 300 mg As kg–1) were applied to an already contaminated soil in pots with two compartments for plant and hyphal growth in a glasshouse experiment. Arsenic application had little or no effect on mycorrhizal colonization, which was about 50% of root length. Mycorrhizal colonization increased frond dry matter yield, lowered the root/frond weight ratio, and decreased frond As concentration by 33–38%. Nevertheless, transfer of As to fronds showed a 43% increase with mycorrhizal colonization at the higher soil As level. Frond As concentrations reached about 1.6 g kg–1 (dry matter basis) in non-mycorrhizal plants in the As-amended soil. Mycorrhizal colonization elevated root P concentration at both soil As levels and mycorrhizal plants had higher P/As ratios in both fronds and roots than did non-mycorrhizal controls.  相似文献   

7.
Seedlings of the rootstocks Pineapple sweet orange (SwO), Carrizo citrange (CC), and sour orange (SO) were grown in low phosphorus (P) sandy soil and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus intraradices, or were non-mycorrhizal (NM) and fertilized with P. VAM and NM seedings of similar shoot size and adequate P-status were selected for study of salinity and flooding stress. One-third of each of the VAM and NM plants were given 150 mM NaCl for a period of 24 days. One-third of the plants were placed into plastic bags and flooded for 21 days while the remaining third were non-stressed controls. In general, neither stress treatment affected mycorrhizal colonization. Salinity stress reduced the hydraulic conductivity of roots, leaf water potential, stomatal conductance and net assimilation of CO2 (ACO2) of mycorrhizal and non-mycorrhizal seedlings to a similar extent. VAM plants of CC and SO accumulated more Cl in leaves than NM plants. Cl was higher in non-mycorrhizal roots of SwO and CC than in mycorrhizal roots. Flooding the root zone for 3 weeks did not produce visible symptoms in the shoot but did influence plant water relations and reduce ACO2 of all 3 rootstocks. VAM and NM plants of each rootstock were affected similarly by flooding. Comparable reduction in nitrogen and P content of both mycorrhizal and non-mycorrhizal plants suggested that flooding stress was primarily affecting root rather than hyphal nutrient uptake. Florida Agricultural Experimental Station Journal Series No. 7773.  相似文献   

8.
Plant growth enhancing effects of arbuscular mycorrhizal (AM) fungi are suitably quantified by comparisons of mycorrhizal and non-mycorrhizal plant growth responses to added phosphorus (P). The ratio between the amounts of added P required for the same yield of mycorrhizal and non-mycorrhizal plants is termed the relative effectiveness of the mycorrhiza. Variation in this relative effectiveness was examined for subterranean clover grown on a high P-fixing soil. Plants were either left non-mycorrhizal or inoculated with one of three AM fungal species with well-characterised differences in external hyphal spread. With no P added, plants from all treatments produced <10% of their maximum growth achieved at non-limiting P supply. The growth response of non-mycorrhizal plants was markedly sigmoid. Mycorrhizal growth responses were not sigmoid but their shape was two-phased. The first phase was an asymptotic approach to 25–30% of maximum growth, followed by a second asymptotic rise to maximum growth. Growth effects of Glomus invermaium and Acaulospora laevis were quite similar. Plants in these treatments produced up to four times greater shoot dry biomass than non-mycorrhizal plants. Scutellospora calospora was less effective. The relative effectiveness of AM fungi varied with the level of P application. This is expected to apply to all soils on which a sigmoid response is obtained for growth of non-mycorrhizal plants. In a simple approximation the relative effectiveness was calculated to range from 1.46 to 15.57. Shoot P contents were increased by up to 25 times by A. laevis, significantly more than by the other two fungi. The further mycelial spread of this fungus is thought to have contributed to its relatively greater effect on plant P content.  相似文献   

9.
Chen BD  Liu Y  Shen H  Li XL  Christie P 《Mycorrhiza》2004,14(6):347-354
We investigated uptake of Cd by arbuscular mycorrhizal (AM) maize inoculated with Glomus mosseae from a low-P sandy calcareous soil in two glasshouse experiments. Plants grew in pots containing two compartments, one for root and hyphal growth and one for hyphal development only. Three levels of Cd (0, 25 and 100 mg kg–1) and two of P (20 and 60 mg kg–1) were applied separately to the two compartments to assess hyphal uptake of Cd. Neither Cd nor P addition inhibited root colonization by the AM fungus, but Cd depressed plant biomass. Mycorrhizal colonization, P addition and increasing added Cd level led to lower Cd partitioning to the shoots. Plant P uptake was enhanced by mycorrhizal colonization at all Cd levels studied. When Cd was added to the plant compartment and P to the hyphal compartment, plant biomass increased with AM colonization and the mycorrhizal effect was more pronounced with increasing Cd addition. When P was added to the plant compartment and Cd to the hyphal compartment, plant biomass was little affected by AM colonization, but shoot Cd uptake was increased by colonization at the low Cd addition rate (25 mg kg–1) and lowered at the higher Cd rate (100 mg kg–1) but with no difference in root Cd uptake. These effects may have been due to immobilization of Cd by the fungal mycelium or effects of the AM fungus on rhizosphere physicochemical conditions and are discussed in relation to possible phytostabilization of contaminated sites by AM plants.  相似文献   

10.
The contribution of the extramatrical mycelium to N and P nutrition of mycorrhizal Norway spruce ( Picea abies (L.) Karst.) was investigated. Seedlings either inoculated with Paxillus involutus (Batsch) Fr. or non-mycorrhizal were grown in a two compartment sand culture system where hyphae were separated from roots by a 45 μm nylon net. Nutrient solution of the hyphal compartment contained either 1.8 m m NH4+ and 0.18 m m H2PO4 or no N and P. Aluminium added to the hyphal compartment as a tracer of mass flow was not detected in the plant compartment, indicating that measurements of N and P transfer by the mycelium were not biased by solute movement across the nylon net.
The addition of N and P to the hyphal compartment markedly increased dry weight, N and P concentration and N and P content of mycorrhizal plants. Calculating uptake from the difference in input and output of nutrient in solution confirmed a hyphal contribution of 73% and 76% to total N and P uptake, respectively. Hyphal growth was increased at the site of nutrient solution input.  相似文献   

11.
Zhu  Y-G.  Smith  S. E. 《Plant and Soil》2001,231(1):105-112
Two experiments were carried out in a growth chamber and a naturally lit glasshouse to investigate the influence of seed phosphorus (P) reserves on growth and P uptake by wheat plants (Triticum aestivum cv Krichauff), and their association with arbuscular mycorrhizal (AM) fungi. Increased seed P reserves improved plant growth at a range of P supply up to over 100 mg P kg–1 soil. Plants grown from seeds with high P reserves tended to accumulate more P from soil, which was mainly attributed to better root system development. Mycorrhizal colonisation did not significantly affect P uptake of plants grown with low irradiance (in growth chamber). However, in the naturally lit glasshouse, mycorrhizal plants had significantly higher P concentrations than non-mycorrhizal plants. Furthermore, mycorrhizal plants grown from seeds low in P accumulated similar amounts of P compared with those grown from seeds with high P, indicating that mycorrhizal colonisation may overcome the disadvantage of having low seed P reserves in the field.  相似文献   

12.
An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two horizontal compartments contained 100 g soil (quartz sand: clay loam, 1:1) with 0.5 g ground clover leaves labelled with32P. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root compartment by either 37 m or 700 m nylon mesh giving only hyphae or both roots and hyphae, respectively, access to the labelled soil. The recovery of32P from the hyphal compartment was 5.5 and 8.6% for plants colonized withGlomus sp. andG. caledonium, respectively, but only 0.6 % for the non-mycorrhizal controls. Interfungal differences were not related to root colonization or hyphal length densities, which were lowest forG. caledonium. Both fungi depleted the labelled soil of NaHCO3-extractable P and32P compared to controls. A 15–25% recovery of32P by roots was not enhanced in the presence of mycorrhizas, probably due to high root densities in the labelled soil. The experiment confirms that AM fungi differ in P uptake characteristics, and that mycorrhizal hyphae can intercept some P immobilization by other microorganisms and P-sorbing clay minerals.  相似文献   

13.
Arbuscular mycorrhizae (AM) fungi affect nutrient uptake for host plants, while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst soil of deficient nutrients beyond the rhizosphere. An experiment was conducted in a microcosm composed of a planting compartment for Cinnamomum camphora seedlings with or without Glomus mosseae fungus (M+ vs. M ) and an adjacent litter compartment containing or not containing additional litter material of Arthraxon hispidus (L+ vs. L ), where the compartments are connected either by nylon mesh of 20 μm or 0.45 μm which either allow available mycorrhizal networks within the litter compartment or prevent mycelium entering into the litter compartment (N+ vs. N ). Plant biomass and nutrients were measured. The results showed that the addition of litter changed the symbiotic process in mycorrhizal colonization, spore, and hyphal density, which when in association with the host plant then affected the biomass, and accumulations of N (nitrogen) and P (phosphorus) in the individual plant as well as root, stem, and leaf respectively. AM fungi increased N and P accumulations and N/P ratio in individual plants and plant tissues. A decrease of the N/P ratio of the individual plant was observed when AM fungus interacted significantly with litter through mycorrhizal networks in the litter compartment. The results indicate that the C. camphora seedlings benefited from litter in nutrient utilization of N and P through the vary of N/P ratio when accessing mycorrhizal networks. These findings suggest that mycorrhizal networks interacting with litter improve growth and nutrients of N and P for plants through the vary of N/P ratio in order to alleviate nutrient limitation under karst soil.  相似文献   

14.
Sustainability of soil-plant systems requires, among other things, good development and function of mycorrhizal symbioses. The effects of P and micronutrient levels on development of an arbuscular mycorrhizal fungus (AMF) and uptake of Zn, Cu, Mn and Fe by maize (Zea mays L.) were studied. A pot experiment with maize either inoculated or not with Glomus intraradices was conducted in a sand:soil (3 :1) mix (pH 6.5) in a greenhouse. Our goal was to evaluate the contribution of mycorrhizae to uptake of Cu, Zn, Mn and Fe by maize as influenced by soil P and micronutrient levels. Two levels of P (10 and 40 mg kg−1 soil) and three levels of a micronutrient mixture: 0, 1X and 2X (1X contained, in mg kg−1 soil, 4.2 Fe, 1.2 Mn, 0.24 Zn, 0.06 Cu, 0.78 B and 0.036 Mo), were applied to pots. There were more extraradical hyphae at the low P level than at the high P level when no micronutrients were added to the soil. Root inoculation with mycorrhiza and application of micronutrients increased shoot biomass. Total Zn content in shoots was higher in mycorrhizal than non-mycorrhizal plants grown in soils with low P and low or no micronutrient addition. Total Cu content in shoots was increased by mycorrhizal colonization when no micronutrients were added. Mycorrhizal plants had lower Mn contents than non-mycorrhizal plants only at the highest soil micronutrient level. AMF increased total shoot Fe content when no micronutrients were added, but decreased shoot Fe when plants were grown at the high level of micronutrient addition. The effects of G. intraradices on Zn, Cu, Mn, and Fe uptake varied with micronutrient and P levels added to soil. Accepted: 27 December 1999  相似文献   

15.
The ability of the external mycelium in arbuscular mycorrhiza for N uptake and transport was studied. The contribution of the fungal symbiont to N acquisition by plants was studied mainly under waterstressed conditions using 15N. Lettuce (Lactuca sativa L) was the host for two isolates of the arbuscular mycorrhizal fungi Glomus mosseae and G. fasciculatum. The experimental pots had two soil compartments separated by a fine mesh screen (60 m). The root system was restricted to one of these compartments, while the fungal mycelium was able to cross the screen and colonize the soil in the hyphal compartment. A trace amount of 15NH 4 + was applied to the hyphal compartment 1 week before harvest. Under water-stressed conditions both endophytes increased the 15N enrichment of plant tissues; this was negligible in nonmycorrhizal control plants. This indicates a direct effect of arbuscular mycorrhizal fungi on N acquisition in relatively dry soils. G. mosseae had more effect on N uptake and G. fasciculatum on P uptake under the water-limited conditions tested, but both fungi improved plant biomass production relative to nonmycorrhizal plants to a similar extent.  相似文献   

16.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

17.
Roger T. Koide 《Oecologia》1991,85(3):389-395
Summary One purpose of this study was to determine whether an increase in plant density would result in a decrease in response to mycorrhizal infection (particularly as measured by phosphorus content). Increases in plant density generally result in increases in root density in the volume of soil occupied by the plants. Root density, in turn, largely determines phosphorus uptake. If mycorrhizal plants had significantly higher effective root densities than non-mycorrhizal plants due to the fungal hyphae and thus were more thorough in exploiting a given volume of soil for phosphorus, then a given increase in root density might result in a greater proportional increase in phosphorus uptake for non-mycorrhizal plants than for mycorrhizal plants. Two experiments were performed in which mycorrhizal infection and available soil volume per plant were manipulated; one in which the number of plants within a given pot size was varied (experiment 1), and another in which single plants were grown in pots of differing volume (experiment 2). The two experiments yielded similar results but for apparently different reasons. In the first experiment, for a given increase in root density, non-mycorrhizal plants had a greater proportional increase in phosphorus uptake than mycorrhizal plants. Thus, as predicted, response to mycorrhizal infection was greatest at the lowest planting density (highest available soil volume per plant, lowest root density). In experiment 2, response to infection was also greatest at the highest available soil volume per plant (largest pot), but pot size did not influence root density. These results show that the benefit from mycorrhizal infection may be partly determined by root density and they suggest that plants either occurring in patches of contrasting root density in a given community, or occurring in different communities with inherently different root densities may differ in their reliance upon mycorrhizal fungi for phosphorus uptake.  相似文献   

18.
Summary Inoculation of lettuce, onion and clover with VA mycorrhizal fungus (Glomus mosseae) increased plant yields and phosphate uptake in three soils that had been depleted in phosphate. From two soils in which the labile pool of phosphate had been labelled with32P, the specific activity of plant phosphate was the same whether the plants were mycorrhizal or non-mycorrhizal. In a third soil (Sonning) the specific activity was lower in lettuce and clover when the plants were mycorrhizal. When the experiment was repeated with the same soil under conditions that gave lower growth rates, the specific activity was the same in mycorrhizal and non-mycorrhizal plants. The lower specific activity in lettuce and clover in the first experiment is atributed to greater release of slowly exchanging phosphate (which is not in equilibrium with the added32P), caused by the high uptake of phosphate by the mycorrhizal plants. When they occur, lower specific activities in mycorrhizal plants may therefore not necessarily indicate a solubilizing effect of the mycorrhiza on soil phosphate.  相似文献   

19.
Cassava (Manihot esculenta Crantz) was grown in the greenhouse and in the field at different levels of phosphorus applied, with or without inoculation with VA mycorrhiza in sterilized or unsterilized soil. When grown in a sterilized soil to which eight levels of P had been applied the non-inoculated plants required the application of 3200 kg P ha−1 to reach near-maximum yield of plant dry matter (DM) at 3 months. Inoculated plants, however, showed only a minor response to applied P. Mycorrhizal inoculation in the P check increased top growth over 80 fold and total P uptake over 100 fold. Relating dry matter produced to the available P concentration in the soil (Bray II), a critical level of 15 ppm P was obtained for mycorrhizal and 190 ppm P for non-mycorrhizal plants. This indicates that the determination of critical levels of P in the soil is highly dependent on the degree of mycorrhizal infection of the root system. In a second greenhouse trial with two sterilized and non-sterilized soils it was found that in both sterilized soils, inoculation was most effective at intermediate levels of applied P resulting in a 15–30 fold increase in DM at 100 kg P ha−1. In the unsterilized soil inoculation had no significant effect in the quilichao soil, but increased DM over 3 fold in the Carimagua soil, indicating that the latter had a native mycorrhizal population less effective than the former. When cassava was grown in the field in plots with 11 levels of P applied, uninoculated plants grown in sterilized soil remained extremely P deficient for 4–5 months after which they recuperated through mycorrhizal infection from unsterilized borders or subsoil. Still, after 11 months inoculation had increased root yields by 40%. In the non-sterilized soil inoculation had no significant effect as the introduced strain was equally as effective as the native mycorrhizal population. These trials indicate that cassava is extremely dependent on an effective mycorrhizal association for normal growth in low-P soils, but that in most natural soils this association is rapidly established and inoculation of cassava in the field can only be effective in soils with a low quantity and quality of native mycorrhiza. In that case, plants should be inoculated with highly effective strains.  相似文献   

20.
Experimental systems for measuring nutrient transport by arbuscular mycorrhizal (AM) fungi in soil are described. The systems generally include two soil compartments that are separated by fine nylon mesh. Both roots and root-external hyphae grow in one compartment, but only hyphae are fine enough to grow through the mesh into the other compartment. Application of tracer isotopes to the soil of this hyphal compartment can be used to measure nutrient uptake by plants via AM fungal hyphae. Use of compartmented systems is discussed with particular reference to phosphorus, which is the mineral nutrient transported in the largest quantity by AM fungi. Laboratory and field applications of the compartmentation methodology are presented with emphasis on the functioning of native AM fungal communities. Advantages and limitations of the method are considered and future important research directions are discussed in this context. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号