首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cold water extracts of marine green algae Codium dwarkense and C. tomentosum were precipitated with different molar concentrations of KCl and were subjected to anion exchange and gel filtration chromatography. Both the species yielded sulphated arabinan through bioassay-guided purification and both were chemically identified as a polymer of alpha-L-arabinofuranose. Products were assayed for their blood anticoagulant activity using PT, APFT and TT tests and found that they differed in the potency of activity though they are chemically identical. Bioassay-guided purification of cold water extract of C. tomentosum yielded sulphated arabinan and sulphated arabinogalactan.  相似文献   

2.
The peptidoglycan-bound arabinogalactan of a virulent strain of Mycobacterium tuberculosis was per-O-methylated, partially hydrolyzed with acid, and the resulting oligosaccharides reduced and O-pentadeute-rioethylated. The per-O-alkylated oligoglycosyl alditol fragments were separated by high pressure liquid chromatography and the structures of 43 of these constituents determined by 1H NMR and gas chromatography/mass spectrometry. The arabinogalactan was shown to consist of a galactan containing alternating 5-linked beta-D-galactofuranosyl (Galf) and 6-linked beta-D-Galf residues. The arabinan chains are attached to C-5 of some of the 6-linked Galf residues. The arabinan is comprised of at least three major structural domains. One is composed of linear 5-linked alpha-D-arabinofuranosyl (Araf) residues; a second consists of branched 3,5-linked alpha-D-Araf units substituted with 5-linked alpha-D-Araf residues at both branched positions. The non-reducing terminal region of the arabinan was characterized by a 3,5-linked alpha-D-Araf residue substituted at both branched positions with the disaccharide beta-D-Araf-(1----2)-alpha-D-Araf. 13C NMR of intact soluble arabinogalactan established the presence of both alpha- and beta-Araf residues in this domain. This non-reducing terminal motif apparently provides the structural basis of the dominant immunogenicity of arabinogalactan within mycobacteria. A rhamnosyl residue occupies the reducing terminus of the galactan core and may link the arabinogalactan to the peptidoglycan. Evidence is also presented for the presence of minor structural features involving terminal mannopyranosyl units. Models for most of the heteropolysaccharide are proposed which should increase our understanding of a molecule responsible for much of the immunogenicity, pathogenicity, and peculiar physical properties of the mycobacterial cell.  相似文献   

3.
A gene encoding an alpha-L: -arabinofuranosidase, designated SaAraf43A, was cloned from Streptomyces avermitilis. The deduced amino acid sequence implies a modular structure consisting of an N-terminal glycoside hydrolase family 43 module and a C-terminal family 42 carbohydrate-binding module (CBM42). The recombinant enzyme showed optimal activity at pH 6.0 and 45 degrees C and was stable over the pH range of 5.0-6.5 at 30 degrees C. The enzyme hydrolyzed p-nitrophenol (PNP)-alpha-L: -arabinofuranoside but did not hydrolyze PNP-alpha-L: -arabinopyranoside, PNP-beta-D: -xylopyranoside, or PNP-beta-D: -galactopyranoside. Debranched 1,5-arabinan was hydrolyzed by the enzyme but arabinoxylan, arabinogalactan, gum arabic, and arabinan were not. Among the synthetic regioisomers of arabinofuranobiosides, only methyl 5-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside was hydrolyzed by the enzyme, while methyl 2-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside and methyl 3-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside were not. These data suggested that the enzyme only cleaves alpha-1,5-linked arabinofuranosyl linkages. The analysis of the hydrolysis product of arabinofuranopentaose suggested that the enzyme releases arabinose in exo-acting manner. These results indicate that the enzyme is definitely an exo-1,5-alpha-L: -arabinofuranosidase. The C-terminal CBM42 did not show any affinity for arabinogalactan and debranched arabinan, although it bound arabinan and arabinoxylan, suggesting that the CBM42 bound to branched arabinofuranosyl residues. Removal of the module decreased the activity of the enzyme with regard to debranched arabinan. The CBM42 plays a role in enhancing the debranched arabinan hydrolytic action of the catalytic module in spite of its preference for binding arabinofuranosyl side chains.  相似文献   

4.
Endogenous mycobacterial endo-D-arabinase activity, which degrades cell wall polysaccharide arabinogalactan, was found in Mycobacterium smegmatis. The arabinan product contains 20-30 arabinosyl residues but no galactofuranosyl residues. Recognition of this endogenous activity results in the possibility of developing antituberculosis drugs that do not require bacterial growth for activity.  相似文献   

5.
Two distinct extracellular alpha-L-arabinofuranosidases (AFases; EC 3.2.1.55) were purified from the culture filtrate of Penicillium chrysogenum 31B. The molecular masses of the enzymes were estimated to be 79 kDa (AFQ1) and 52 kDa (AFS1) by SDS-PAGE. Both enzymes had their highest activities at 50 degrees C and were stable up to 50 degrees C. Enzyme activities of AFQ1 and AFS1 were highest at pH 4.0 to 6.5 and pH 3.3 to 5.0, respectively. Addition of 10 mg/ml arabinose to the reaction mixture decreased the AFS1 activity but hardly affected AFQ1. Both enzymes displayed broad substrate specificities; they released arabinose from branched arabinan, debranched arabinan, arabinoxylan, arabinogalactan, and arabino-oligosaccharides. AFS1 also showed low activity towards p-nitrophenyl-beta-D-xylopyranoside. An exo-arabinanase, which catalyzes the release of arabinobiose from linear arabinan at the nonreducing terminus, acted synergistically with both enzymes to produce L-arabinose from branched arabinan.  相似文献   

6.
Dong Q  Yao J  Fang JN  Ding K 《Carbohydrate research》2007,342(10):1343-1349
Two major polysaccharide fractions, CDA-1A and CDA-3B, were isolated from the cold-water extract of Cistanche deserticola Y. C. Ma, a holoparasitic plant and a valuable traditional Chinese medicine, using anion-exchange chromatography on DEAE-cellulose and gel-permeation chromatography on Sephacryl S-300 and Sephadex G-150. Their major structural features were elucidated using component and linkage analyses, periodate oxidation, Smith degradation, partial acid hydrolysis, and NMR spectroscopy. The results indicated that CDA-1A is an alpha-(1-->4)-D-glucan with alpha-(1-->6)-linked branches attached to the O-6 of branch points and that CDA-3B is an RG-I polysaccharide containing a typical rhamnogalacturonan backbone and arabinogalactan or arabinan branches. Bioactivity tests showed that CDA-1A is inert for T-cell proliferation stimulation but active for B-cell proliferation, while CDA-3B is potent for the stimulation of both T- and B-cell proliferation.  相似文献   

7.
The complex cell wall of Mycobacterium tuberculosis is the hallmark of acid fast bacteria and is responsible for much of its physiological characteristics. Hence, much effort has been made to determine its primary structure. Such studies have been hampered by its extreme complexity. Also, its insolubility leads to difficulties determining the presence or absence of base labile groups. We have used an endogenous arabinase to solubilize the arabinan region of the cell wall and have shown using mass spectrometry and NMR that succinyl esters are present on O2 of the inner-branched 1,3,5-alpha-d-arabinofuranosyl residues. In addition, an inner arabinan region of 14 linear alpha-1,5 arabinofuranosyl residues has been identified. These and earlier results now allow the presentation of a model of the entire primary structure of the mycobacterial mycolyl arabinogalactan highlighted by three arabinan chains of 31 residues each.  相似文献   

8.
Suspension-cultured cells of Phaseolus vulgaris (French bean) incorporated [1-3H] arabinose in vivo into high-Mr polymers that could be separated into glycoprotein and polysaccharide. Microsomal membranes from suspension-cultured cells of beans incorporated arabinose from UDP-beta-L-arabinose in vitro into both polysaccharide and glycoprotein. The enzyme involved in arabinan synthesis, arabinan synthase, appeared to be immunologically distinct from the protein:arabinosyltransferase system. Both these activities are inducible, but behave differently with either plant-growth-regulator or fungal-elicitor treatments. After subculture of cells entering the stationary growth phase the arabinan synthase activity reaches much higher values than does that of the protein transferase system during the initial period of cell division and growth, whereas after elicitation at the same growth stage, all the increased incorporation of arabinose occurs into glycoprotein of Mr higher than 200 000 and to a greater extent into a specific glycoprotein of Mr 42 500. Preliminary characterization of these glycoproteins prepared under non-reducing conditions and after acid and alkaline hydrolysis suggests that the high-Mr glycoprotein material is similar to arabinogalactan protein, whereas the lower-Mr material may be a hydroxyproline-rich protein existing as a dimer and that specifically increases during the hypersensitive response of the cells to the fungal elicitor from Colletotrichum lindemuthianum.  相似文献   

9.
A color-variant strain of Aureobasidium pullulans (NRRL Y-12974) produced α-L-arabinofuranosidase (α-L-AFase) when grown in liquid culture on sugar beet arabinan, wheat arabinoxylan, L-arabinose, L-arabitol, xylose, xylitol, oat spelt xylan, corn fiber, or arabinogalactan. L-Arabinose was most effective for production of both whole-broth and extracellular α-L-AFase activity, followed by L-arabitol. Oat spelt xylan, sugar beet arabinan, xylose, xylitol, and wheat arabinoxylan were intermediate in their ability to support α-L-AFase production. Lower amounts of enzyme activity were detected in corn fiber- and arabinogalactan-grown cultures. Received: 16 April 1998 / Accepted: 17 June 1998  相似文献   

10.
The arabinans of the mycobacterial cell wall are key structural and immunological polymers in the context of arabinogalactan (AG) and lipoarabinomannan (LAM) respectively. The three homologous membrane proteins EmbA, EmbB and EmbC are known to be involved in the synthesis of arabinan but their biochemical functions are not understood. Herein we show, that synthesis of LAM, but not AG, ceases after inactivation of embC in Mycobacterium smegmatis by insertional mutagenesis. LAM synthesis is restored upon complementation with the embC wild-type gene. Previously we have shown that the synthesis of the arabinan of AG is affected by embA or embB disruption. Thus the Emb proteins are capable of differential recognition of the galactan or mannan acceptors prior to appropriate arabinosylation. In addition, a combination of genetic and biochemical approaches have allowed us to assign some specific functions to the regions of emb gene products. Complementation of the embCmacr; mutant with a hybrid gene encoding the N-terminus of EmbC and the C-terminus of EmbB resulted in LAM with a lower molecular weight than the wild-type LAM. Structural studies involving enzyme digestion, chromatography and mass spectrometry analyses revealed that the arabinan of the 'LAM' formed in the hybrid was of AG kind rather than LAM type of arabinan.  相似文献   

11.
The emb genes are conserved among different mycobacteria. In Mycobacterium smegmatis and Mycobacterium tuberculosis, they belong to an operon comprising three genes, embC, embA, and embB. The EmbB protein has been proposed to be the target of ethambutol, a drug which is known to inhibit the synthesis of the arabinan portion of the mycobacterial cell wall arabinogalactan (AG). To further define the role of EmbB protein in arabinan biosynthesis, embA, -B, and -C genes were inactivated individually by homologous recombination in M. smegmatis. All three mutants were viable, and among the three, the slowest growing embB(-) mutant encountered profound morphological changes and exhibited a higher sensitivity to hydrophobic drugs and detergents, presumably due to an increase in cell wall permeability. Furthermore, chemical analyses showed that there was a diminution in the arabinose content of arabinogalactan from the embA(-) and embB(-) mutants. Specifically, in comparison with the wild-type strain, the crucial terminal hexaarabinofuranosyl motif, which is a template for mycolylation, was altered in both embA(-) and embB(-) mutants. Detailed nuclear magnetic resonance studies coupled with enzyme digestion, chromatography, and mass spectrometry analyses revealed that the disaccharide beta-d-Ara(f)-(1-->2)-alpha-d-Ara(f) extension from the 3-position of the 3,5-linked alpha-d-Ara(f) residue is markedly diminished. As a consequence, a linear terminal beta-d-Ara(f)-(1-->2)-alpha-d-Ara(f)-(1-->5)-alpha-d-Ara(f)-(1-->5)-alpha-d-Ara(f) is formed, a motif which is a recognized, nonreducing terminal feature of lipoarabinomannan but not of normal AG. Upon complementation with the embB and embA wild-type genes, the phenotype of the mutants reverted to wild-type, in that normal AG was resynthesized. Our results clearly show that both EmbA and EmbB proteins are involved in the formation of the proper terminal hexaarabinofuranoside motif in AG, thus paving the way for future studies to identify the complete array of arabinosyltransferases involved in the synthesis of mycobacterial cell wall arabinan.  相似文献   

12.
An exo-beta-1,3-galactanase gene from Phanerochaete chrysosporium has been cloned, sequenced, and expressed in Pichia pastoris. The complete amino acid sequence of the exo-beta-1,3-galactanase indicated that the enzyme consists of an N-terminal catalytic module with similarity to glycoside hydrolase family 43 and an additional unknown functional domain similar to carbohydrate-binding module family 6 (CBM6) in the C-terminal region. The molecular mass of the recombinant enzyme was estimated as 55 kDa based on SDS-PAGE. The enzyme showed reactivity only toward beta-1,3-linked galactosyl oligosaccharides and polysaccharide as substrates but did not hydrolyze beta-1,4-linked galacto-oligosaccharides, beta-1,6-linked galacto-oligosaccharides, pectic galactan, larch arabinogalactan, arabinan, gum arabic, debranched arabinan, laminarin, soluble birchwood xylan, or soluble oat spelled xylan. The enzyme also did not hydrolyze beta-1,3-galactosyl galactosaminide, beta-1,3-galactosyl glucosaminide, or beta-1,3-galactosyl arabinofuranoside, suggesting that it specifically cleaves the internal beta-1,3-linkage of two galactosyl residues. High performance liquid chromatographic analysis of the hydrolysis products showed that the enzyme produced galactose from beta-1,3-galactan in an exo-acting manner. However, no activity toward p-nitrophenyl beta-galactopyranoside was detected. When incubated with arabinogalactan proteins, the enzyme produced oligosaccharides together with galactose, suggesting that it is able to bypass beta-1,6-linked galactosyl side chains. The C-terminal CBM6 did not show any affinity for known substrates of CBM6 such as xylan, cellulose, and beta-1,3-glucan, although it bound beta-1,3-galactan when analyzed by affinity electrophoresis. Frontal affinity chromatography for the CBM6 moiety using several kinds of terminal galactose-containing oligosaccharides as the analytes clearly indicated that the CBM6 specifically interacted with oligosaccharides containing a beta-1,3-galactobiose moiety. When the degree of polymerization of galactose oligomers was increased, the binding affinity of the CBM6 showed no marked change.  相似文献   

13.
Polysaccharide composition of the fruit juice of Morinda citrifolia (Noni)   总被引:1,自引:0,他引:1  
Bui AK  Bacic A  Pettolino F 《Phytochemistry》2006,67(12):1271-1275
An ethanol-insoluble, high molecular weight fraction was collected from the juice of Morinda citrifolia fruit grown in Viet Nam. The fraction is composed primarily of carbohydrate (67% (w/w)). The polysaccharide fraction consists predominantly of GalAp (53.6mol%), Araf (13.6mol%), Galp (17.9mol%) and Rhap (9.5mol%). Glycosyl linkage analysis suggests the polysaccharide fraction contains mostly the pectic polysaccharides, homogalacturonan (4-GalAp), rhamnogalacturonan I (4-GalAp, 2-Rhap, 2,4-Rhap), arabinan (5-Araf, 3,5-Araf, t-Araf), type I arabinogalactan (4-Galp, 3,4-Galp, t-Araf) and beta-glucosyl Yariv-binding type II arabinogalactan (3,6-Galp, t-Araf). Low levels of xyloglucan (4-Glcp, 4,6-Glcp, t-Xylp, t-Fucp), heteroxylan (4-Xylp) and heteromannan (4-Manp) are also present.  相似文献   

14.
This is the first in a series of papers dealing with the structure of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus). These studies have been made possible by the availability of purified hydrolytic enzymes and by recent improvements in the techniques of methylation analysis. These techniques have permitted us to identify and quantitate the macromolecular components of sycamore cell walls. These walls are composed of 10% arabinan, 2% 3,6-linked arabinogalactan, 23% cellulose, 9% oligo-arabinosides (attached to hydroxyproline), 8% 4-linked galactan, 10% hydroxyproline-rich protein, 16% rhamnogalacturonan, and 21% xyloglucan.  相似文献   

15.
The arabinogalactan of mycobacteria contains both monosaccharides in the furanose ring form, which are absent in mammals. We report here the first synthesis of the tetrasaccharide fragment alpha-D-Araf-(1-->5)-beta-D-Galf-(1-->5)-beta-D-Galf-(1-->6)-D-Galf, conveniently derivatized for further elongation. The strategy relied on the use of suitably substituted D-galactono-1,4-lactones as precursors for the galactofuranose units. Reduction of lactone tetrasaccharide 9 with disiamylborane afforded the tetrasaccharide synthon 1. The tetrasaccharide contains the linker unit of the arabinan to the galactan.  相似文献   

16.
The recent availability of pure lipoarabinomannan (LAM) from Mycobacterium spp. has resulted in its implication in host-parasite interaction, which events may be mediated by the presence of a phosphatidylinositol unit at the reducing end of LAM. Herein we address the structure of the antigenic, nonreducing end of the molecule. Through the process of 13C NMR analysis of the whole molecule and gas chromatography/mass spectrometry of alditol acetates derived from the differential per-O-alkylated lipopolysaccharide, the majority of the arabinosyl residues were recognized as furanosides. Second, through analysis of per-O-alkylated oligoarabinosyl arabinitol fragments of partially hydrolyzed LAM, it was established that the internal segments of the arabinan component consists of branched 3,5-linked alpha-D-arabinofuranosyl (Araf) units with stretches of linear 5-linked alpha-D-Araf residues attached at both branch positions, whereas the nonreducing terminal segments of LAM consist of either of the two arrangements, beta-D-Araf-(1----2)-alpha-D-Araf-(1----5)- alpha-D-Araf---- or [beta-D-Araf-(1----2)-alpha-D-Araf-(1----]2---- (3 and 5)-alpha-D-Araf----. Since this latter arrangement also characterizes the terminal segments of the peptidoglycan-bound arabinogalactan of Mycobacterium spp., we propose that mycobacteria elaborate unique terminal arabinan motifs in two distinct settings. In the case of the bound arabinogalactan, these motifs provide the nucleus for the esterified mycolic acids, entities which dominate the physicochemical features of mycobacteria and their peculiar pathogenesis. In the case of LAM, these motifs, non-mycolylated, are the dominant B-cell antigens responsible for the majority of the copious antibody response evident in most mycobacterial infections.  相似文献   

17.
The zygomycete fungus Rhizomucor pusillus HHT-1, cultured on L(+)arabinose as a sole carbon source, produced extracellular alpha-L-arabinofuranosidase. The enzyme was purified by (NH4)2SO4 fractionation, gel filtration, and ion exchange chromatography. The molecular mass of this monomeric enzyme was 88 kDa. The native enzyme had a pI of 4.2 and displayed a pH optimum and stability of 4.0 and 7.0-10.0, respectively. The temperature optimum was 65 degrees C, and it was stable up to 70 degrees C. The Km and Vmax for p-nitrophenyl alpha-L-arabinofuranoside were 0.59 mM and 387 micromol x min(-1) x mg(-1) protein, respectively. Activity was not stimulated by metal cofactors. The N-terminal amino acid sequence did not show any similarity to other arabinofuranosidases. Higher hydrolytic activity was recorded with pnitrophenyl alpha-L-arabinofuranoside, arabinotriose, and sugar beet arabinan; lower hydrolytic activity was recorded with oat-spelt xylan and arabinogalactan, indicating specificity for the low molecular mass L(+)-arabinose containing oligosaccharides with furanoside configuration.  相似文献   

18.
A number of mycobacterial arabinosyltransferases, such as the Emb proteins, AftA, AftB, AftC, and AftD have been characterized and implicated to be involved in the cell wall arabinan assembly. These arabinosyltransferases are essential for the viability of the organism and are logically valid targets for developing new anti-tuberculosis agents. For instance, Ethambutol, a first line anti-tuberculosis drug, targets the Emb proteins involved in the formation of the arabinan of cell wall arabinogalactan. Among these arabinosyltransferases, the terminal β-(1→2) arabinosyltransferase activity has been associated with AftB. The predicted topology of AftB in Mycobacterium tuberculosis has 10 N terminal transmembrane domains and a C terminal hydrophilic domain similar to the Emb proteins. It has a conserved GT-C motif and is difficult to express. In a cell free assay, synthetic disaccharide, α-d-Araf-(1→5)-α-d-Araf-octyl, has been used as a substrate to explore the function of AftB. In our work, the disaccharide was synthesized in its pentenylated and biotinylated form, and the enzymatic product formed was identified as the β-(1→2) arabinofuranose adduct. When synthetic tri- and tetra-saccharides were used as substrates, a mixture of products containing both β-(1→2) and α-(1→5) linkages were formed. Therefore, the biotinylated disaccharide was selected to develop a scintillation proximity assay.  相似文献   

19.
An arabinofuranohydrolase (AXH-d3) was purified from a cell-free extract of Bifidobacterium adolescentis DSM 20083. The enzyme had a molecular mass of approximately 100 kDa as determined by gel filtration. It displayed maximum activity at pH 6 and 30 °C. Using an arabinoxylan-derived oligosaccharide containing double-substituted xylopyranosyl residues established that the enzyme specifically released terminal arabinofuranosyl residues linked to C-3 of double-substituted xylopyranosyl residues. In addition, this arabinofuranohydrolase released arabinosyl groups from wheat flour arabinoxylan polymer but showed no activity towards p-nitrophenyl α-l-arabinofuranoside or towards sugar-beet arabinan, soy arabinogalactan, arabino-oligosaccharides and arabinogalacto-oligosaccharides. Received: 15 July 1996 / Received revision: 18 October 1996 / Accepted: 18 October 1996  相似文献   

20.
S Kaneko  M Sano    I Kusakabe 《Applied microbiology》1994,60(9):3425-3428
alpha-L-Arabinofuranosidase (EC 3.2.1.55) was purified from culture supernatant of Bacillus subtilis 3-6. The enzyme had a molecular weight of 61,000 and displayed maximum activity at pH 7.0 and 60 degrees C. It released arabinose from O-alpha-L-arabinofuranosyl-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-x ylopyranos e (A1X2), O-beta-D-xylopyranosyl-(1-->4)-[O-alpha-L-arabinofuranosyl-(1-->3)]- O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (A1X3), and arabinan, but not from O-beta-D-xylopyranosyl-(1-->2)-O-alpha-L- arabinofuranosyl-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-O-beta-D-xylopyr anosyl- (1-->4)-D-xylopyranose (A1X4), arabinoxylan, gum arabic, or arabinogalactan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号