首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
We used particle bombardment to produce transgenic wheat and rice plants expressing recombinant soybean ferritin, a protein that can store large amounts of iron. The cDNA sequence was isolated from soybean by RT-PCR and expressed using the constitutive maize ubiquitin-1 promoter. The presence of ferritin mRNA and protein was confirmed in the vegetative tissues and seeds of transgenic wheat and rice plants by northern and western blot analysis, respectively. The levels of ferritin mRNA were similar in the vegetative tissues of both species, but ferritin protein levels were higher in rice. Both ferritin mRNA and protein levels were lower in wheat and rice seeds. ICAP spectrometry showed that iron levels increased only in vegetative tissues of transgenic plants, and not in the seeds. These data indicate that recombinant ferritin expression under the control of the maize ubiquitin promoter significantly increases iron levels invegetative tissues, but that the levels of recombinant ferritin in seeds are not sufficient to increase iron levels significantly over those in the seeds of non-transgenic plants.  相似文献   

2.
Insect-resistant plants have been developed throughexpression of insecticidal proteins from Bacillusthuringiensis (Bt) in the early 1980s [1,2]. However, forcontrol of insect pests, it is necessary to increase theexpression of Bt protein overall or in specific plant tissues.To increase the expression level, synthetic Bt genes havebeen developed and used to produce transgenic plants[2–5]. A number of approaches have been taken to increasethe expression level of foreign proteins in transgeni…  相似文献   

3.
Xie T  Qiu Q  Zhang W  Ning T  Yang W  Zheng C  Wang C  Zhu Y  Yang D 《Peptides》2008,29(11):1862-1870
Human insulin-like growth factor 1(hIGF-1) is essential for cell proliferation and used therapeutically in treating various diseases including diabetes mellitus. Here, we present that a recombinant hIGF-1(rhIGF-1) was expressed fused with the C-terminus of a rice luminal binding protein and accumulated highly in rice seeds, reaching 6.8+/-0.5% of total seed protein. The rhIGF-1 fusion was demonstrated to possess biological activity to stimulate cell proliferation. Importantly, the unprocessed transgenic seeds could significantly increase plasma rhIGF-1 level and reduce blood glucose of diabetic mice via oral delivery. Further studies suggested that transgenic seeds reduced blood glucose of diabetic mice by enhancing islet cells survival and increasing insulin secretion rather than increasing insulin sensitivity. These results indicated the potential of the novel fusion expression system in production and oral delivery of biologically active small peptides for diseases.  相似文献   

4.
Human granulocyte-macrophage colony stimulating factor (GM-CSF), a cytokine with many applications in clinical medicine, was produced specifically in the seeds of transgenic tobacco plants. Two rice endosperm-specific glutelin promoters of different size and sequence, Gt1 and Gt3, were used to direct expression. Also in the Gt3 construct, the GM-CSF coding region was in fusion with the first 24 nucleotides of the mature rice glutelin sequence at its 5' end. With the Gt1 construct plants, seed extracts contained the recombinant human GM-CSF protein up to a level of 0.03% of total soluble protein. Transgenic seed extracts actively stimulated the growth of human TF-1 cells suggesting that the seed-produced GM-CSF alone and in fusion with the rice glutelin peptide was stable and biologically active. Furthermore, native tobacco seed extracts inhibited the activity of E. coli-derived GM-CSF in this cytokine-dependent cell line. The seeds of F1 generation plants retained the biological activity of human GM-CSF protein indicating that the human coding sequence was stably inherited. The feasibility of oral delivery of such stable seed-produced cytokines is discussed.  相似文献   

5.
6.
Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of T2 progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.  相似文献   

7.
Lysine-rich protein gene (lys) was cloned from Psophocarpus tetragonolobus (L.) DC. A plant expression plasmid was constructed and lys gene was under the control of maize ubiquitin promoter which is the highest efficient monocotyledon promoter. The plasmid was introduced into rice embryogenic calli by microprojectile bombardment. The regenerated fertile plants were obtained by effective selection for hygromycin B resistance. Genomic PCR and Southern blotting analyses showed that the lys gene has been integrated into rice genome. Simultaneously, the results of GUS histochemical assay demonstrated the transgenic rice plants. Data analysis showed that lysine content in most of the 11 transgenic plants is differently improved, and in one of them increased by 16.04%.  相似文献   

8.
高赖氨酸蛋白基因导入水稻及可育转基因植株的获得   总被引:33,自引:0,他引:33  
构建了一个植物高效表达质粒,使来源于四棱豆(Psophocarpus tetragonolobus(L.)DC)的高赖氨酸蛋白基因(lys)受控于单子叶植物ubiqutin强启动子下表达。用基因枪法将其导入水稻(Oryza sativa L.)幼胚诱导的愈伤组织,经潮霉素抗性筛选,得到可育的再生植株。经PCR和Southem blotting检测,表明该基因已整合到水稻的基因组织。GUS组织化学染色表明转基因水稻植株的叶、茎和根中均有gus基因的表达。测定112株转基因水稻叶片中赖氨酸叶量,大部分植株有不同程度的提高,最高幅度为16.04%。  相似文献   

9.
Agrobacterium‐mediated gene transformation was used to introduce plastidic protoporphyrinogen IX oxidase (Protox) genes from Arabidopsis, with and without the transit sequence, into the rice genome. They were placed under the control of the constitutive and ubiquitous maize ubiquitin promoter, and their abilities to confer resistance to the diphenyl ether‐type herbicide, oxyfluorfen were compared. The integration and expression of the transgene in the T1 generation was examined by Southern, northern and western blot analyses. Surprisingly, as judged by an in vivo seed germination assay and an in vitro cellular leakage assay, both lines were similarly resistant to oxyfluorfen. The tolerance to cellular damage (lipid peroxidation and electrolyte leakage) was higher in transgenic plants than in wild‐type plants. In transgenic plants, the degree of herbicide resistance varied directly with the absolute amount of Protox protein expression. Both the intact protein and the protein with the transit sequence deleted were accumulated in plastids.  相似文献   

10.
Betaine aldehyde dehydrogenase (BADH) is a major oxidative enzyme that converts betaine aldehyde to glycine betaine (GB), an osmoprotectant compound in plants. Japonica rice (salt-sensitive) was genetically engineered to enhance salt tolerance by introducing the OsBADH1 gene from Indica rice (salt-tolerant), which is a GB accumulator. We produced transgenic rice plants overexpressing the modified OsBADH1 gene under the control of the maize ubiquitin promoter. The transgenic rice showed increased OsBADH1 gene expression and OsBADH1 enzyme production, resulting in the accumulation of GB. It also exhibited enhanced salt tolerance in immature and mature transgenic rice seedlings. The adverse effect of salt stress on seed germination, the growth of immature and mature seedlings, water status, and photosynthetic pigments was alleviated in transgenic seedlings.  相似文献   

11.
利用转基因植物作为生物反应器表达抗原蛋白具有广阔的应用前景。以新城疫病毒融合蛋白(NDVF)基因1.7kb全长编码区序列为外源基因与组成型表达的玉米泛素蛋白基因(Ubi)启动子和农杆菌胭脂碱合成酶基因(nos)终止子组成嵌合基因,构建了适宜于农杆菌介导转化水稻的转化载体pUNDV,经根癌农杆菌介导的遗传转化方法将由Ubi动子驱动的NDVF嵌合基因导入水稻细胞中,经潮霉素抗性筛选,共再生获得了6个独立的转基因株系。PCR分析结果表明NDVF基因已整合到水稻基因组中。ELISA和Western blot分析结果证实NDVF蛋白在部分转基因水稻叶片组织中获得表达,其中植株F5叶片组织中具有较高的表达水平。将F5叶片可溶性总蛋白皮下注射免疫BALB/c小鼠,结果表明能够诱导小鼠产生一定水平的NDVF蛋白特异抗体。  相似文献   

12.
One transgenic rice line lacking CrylAb expression product was screened in the progenies of Agrobacterium-transformed transgenic rice variety Zhong 8215 with a cry1Ab gene under field releasing conditions by using GUS histochemical assay and Western blot. Molecular hybridization results revealed that the crylAb gene was silenced in the transgenic rice variety Zhong 8215 and two copies of ubiquitin promoter were integrated into the rice genome. The silencing of crylAb gene in transgenic rice was found to be due to the methylation of the ubiquitin promoter as revealed by methylation analysis. Meanwhile, different concentrations of demethylation reagent 5-azacytidine combining with different treatment time were employed to treat the silenced transgenic rice seeds. The results indicated that 5-azacytidine could reactivate 8%-30% of the silenced transgenic rice plants and the expression level of the reactivated cry1Ab transgene could reach as high as 0.147% of the total soluble protein. Treatment with low con  相似文献   

13.
14.
Chitinases, -1,3-glucanases, and ribosome-inactivating proteins are reported to have antifungal activity in plants. With the aim of producing fungus-resistant transgenic plants, we co-expressed a modified maize ribosome-inactivating protein gene, MOD1, and a rice basic chitinase gene, RCH10, in transgenic rice plants. A construct containing MOD1 and RCH10 under the control of the rice rbcS and Act1 promoters, respectively, was co-transformed with a plasmid containing the herbicide-resistance gene bar as a selection marker into rice by particle bombardment. Several transformants analyzed by genomic Southern-blot hybridization demonstrated integration of multiple copies of the foreign gene into rice chromosomes. Immunoblot experiments showed that MOD1 formed approximately 0.5% of the total soluble protein in transgenic leaves. RCH10 expression was examined using the native polyacrylamide-overlay gel method, and high RCH10 activity was observed in leaf tissues where endogenous RCH10 is not expressed. R1 plants were analyzed in a similar way, and the Southern-blot patterns and levels of transgene expression remained the same as in the parental line. Analysis of the response of R2 plants to three fungal pathogens of rice, Rhizoctonia solani, Bipolaris oryzae, and Magnaporthe grisea, indicated statistically significant symptom reduction only in the case of R. solani (sheath blight). The increased resistance co-segregated with herbicide tolerance, reflecting a correlation between the resistance phenotype and transgene expression.  相似文献   

15.
The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.  相似文献   

16.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

17.
Commercial production of aprotinin in transgenic maize seeds   总被引:7,自引:0,他引:7  
The development of genetic transformation technology for plants has stimulated an interest in using transgenic plants as a novel manufacturing system for producing different classes of proteins of industrial and pharmaceutical value. In this regard, we report the generation and characterization of transgenic maize lines producing recombinant aprotinin. The transgenic aprotinin lines recovered were transformed with the aprotinin gene using the bar gene as a selectable marker. The bar and aprotinin genes were introduced into immature maize embryos via particle bombardment. Aprotinin gene expression was driven by the maize ubiquitin promoter and protein accumulation was targeted to the extracellular matrix. One line that showed a high level of aprotinin expression was characterized in detail. The protein accumulates primarily in the embryo of the seed. Southern blot analysis showed that the line had at least 20 copies of the bar and aprotinin genes. Further genetic analysis revealed that numerous plants derived from this transgenic line had a large range of levels of expression of the aprotinin gene (0–0.069%) of water-soluble protein in T2 seeds. One plant lineage that showed stable expression after 4 selfing generations was recovered from the parental transgenic line. This line showed an accumulation of the protein in seeds that was comparable to the best T2 lines, and the recombinant aprotinin could be effectively recovered and purified from seeds. Biochemical analysis of the purified aprotinin from seeds revealed that the recombinant aprotinin had the same molecular weight, N-terminal amino acid sequence, isoelectric point, and trypsin inhibition activity as native aprotinin. The demonstration that the recombinant aprotinin protein purified from transgenic maize seeds has biochemical and functional properties identical to its native counterpart provides a proof-of-concept example for producing new generation products for the pharmaceutical industry.  相似文献   

18.
A 1369 bp DNA fragment (Sc) was isolated from a full-length clone of sugarcane bacilliform badnavirus (ScBV) and was shown to have promoter activity in transient expression assays using monocot (banana, maize, millet and sorghum) and dicot plant species (tobacco, sunflower, canola and Nicotiana benthamiana). This promoter was also tested for stable expression in transgenic banana and tobacco plants. These experiments showed that this promoter could drive high-level expression of the -glucuronidase (GUS) reporter gene in most plant cells. The expression level was comparable to the maize ubiquitin promoter in standardised transient assays in maize. In transgenic banana plants the expression levels were variable for different transgenic lines but was generally comparable with the activities of both the maize ubiquitin promoter and the enhanced cauliflower mosaic virus (CaMV) 35S promoter. The Sc promoter appears to express in a near-constitutive manner in transgenic banana and tobacco plants. The promoter from sugarcane bacilliform virus represents a useful tool for the high-level expression of foreign genes in both monocot and dicot transgenic plants that could be used similarly to the CaMV 35S or maize polyubiquitin promoter.  相似文献   

19.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

20.
抗草甘膦抗虫植物表达载体的构建及其转基因烟草的分析   总被引:15,自引:0,他引:15  
构建了含草甘膦抗性突变基因(aroAM12)和人工合成重组Bt抗虫基因(Bts1m)的植物表达载体pCM12_s1m。aroAM12基因的表达由CaMV35S启动子控制,Bts1m基因的表达由2E_CaMV35S启动子和Ω因子控制。通过农杆菌介导,将aroAM12和Bts1m基因转化到烟草中,转基因烟草通过在含草甘膦的MS培养基上筛选而获得。Southern blot分析表明所有经过草甘膦筛选出的转化植株都整合有aroAM12基因,约70%的转化植株同时整合有aroAM12和Bts1m基因。Northern blot、Immunodot blot分析进一步证明整合的两个基因在转录、翻译水平上均进行了表达,不同植株之间表达存在着差异。草甘膦抗性和虫试实验证明,获得的转基因烟草对草甘膦和烟青虫具有很强的抗性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号