首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genomic organization of the mouse dihydrofolate reductase gene has been determined by hybridization of specific cDNA sequences to restriction endonuclease-generated fragments of DNA from methotrexate-resistant S-180 cells. The dihydrofolate reductase gene contains a minimum of five intervening sequences (one in the 5′ untranslated region and four in the protein-coding region) and spans a minimum of 42 kilobase pairs on the genome. Genomic sequences at the junction of the intervening sequence and mRNA-coding sequence and at the polyadenylation site have been determined. A similar organization is found in independently isolated methotrexate-resistant cell lines, in the parental sensitive cell line and in several inbred mouse strains, indicating that this organization represents that of the natural gene.  相似文献   

2.
3.
4.
5.
6.
7.
8.
We constructed a gene library from a murine cell line with amplified dihydrofolate reductase (dhfr) genes by inserting random segments of DNA into lambda Ch4A. From this library, the dhfr gene and 30 kilobase pairs of surrounding DNA were cloned, and the restriction map was determined. All of the coding regions were sequenced and show that the gene spans a total of 31 kilobase pairs and has five intervening sequences in the coding portion of the gene. In addition, two classes of variant dhfr genes were found in the amplified line, which were amplified and present at levels of 10 to 30% of the normal dhfr genes. Numerous repeated sequences were located throughout the gene region, some of which share homology with previously defied families of repeats.  相似文献   

9.
10.
11.
Summary Large quantities of dihydrofolate reductase are synthesized in bacteriophage T5 infected E. coli cells. Some evidence that this enzyme is the product of a viral gene was published by Mathews (1967). Further evidence is presented now by showing that the newly synthesized enzyme differs from the preexisting E. coli reductase in molecular weight and salt solubility.The expression of the T5 dihydrofolate reductase gene was not affected by deletions in the del region of the phage genome. The map position of the reductase gene was determined by marker rescue experiments designed as helped transfection procedure: When E. coli B cells were preinfected with T5 dihydrofolate reductase amber mutants, made competent, and transfected with T5 wild type DNA, viable phages were obtained. Wild type recombinant phages were observed, when the transfecting DNA had been digested with the restriction endonucleases EcoRI, HpaI, PstI, and SalI. No rescue occurred when the DNA had been digested with AluI, EcoRII, HindII, HindIII, MboII, Sau3A, and XbaI. Single EcoRI, HpaI, and SalI restriction fragments were isolated and found to rescue the dihydrofolate reductase gene. Their common overlapping sequence corresponds to 8.6% of the phage DNA, a segment of about 10,000 base pairs length, which extends from position 0.37 to position 0.46 of the physical map. After cleaving this segment at its single HindIII recognition site marker rescue no longer occurred. From these results it was concluded that the dihydrofolate reductase gene either lies at or very close to this site at position 0.4.The helped transfection method was also used to rescue T5 mutants with defects in the genes C2 and D9. Gene C2 was localized on an EcoRI fragment that covers the DNA from map position 0.08 to map position 0.25. By localizing the two genes B3 and C2 on the restriction map of the T5 DNA a correlation of the genetic and the physical maps of the T5 genome has been established. Abbreviations. The symbols for T5 phages follow those of McCorquodale (1975) and the nomenclature for restriction nucleases that of Smith and Nathans (1973). kb=kilo base pairs  相似文献   

12.
Introduction of the plasmid containing the methotrexate-resistant (Mtx-r) bacterial gene of dihydrofolate reductase (DHFR) under the control of the early promoter of SV 40 into the donor bone cells of the mouse with subsequent transplantation of the cells into lethally irradiated mice results in the increase in the life span of mice under conditions of methotrexate selection. It is due to the stable transformation of the bone marrow colony-forming cells with the plasmic DNA and the synthesis of the bacterial Mtx-r DHFR in the spleen and bone marrow of the recipient mouse.  相似文献   

13.
Growth of methotrexate-resistant dihydrofolate reductase gene-amplified KB cells in the presence of 5-fluorouracil results in an increase in dihydrofolate reductase mRNA. This increase can be solely attributed to a species of RNA of approximately 3.5 kilobase pairs in size. Although dihydrofolate reductase enzyme activity increases per cell with increasing 5-fluorouracil, there is a decrease of enzyme activity per mg of protein (Dolnick, B. J., and Pink, J. J. (1983) J. Biol. Chem. 258, 13299-13306). The rate of in vivo enzyme synthesis, as assayed by immunoprecipitation and supported by gel electrophoresis, does not decrease and may in fact increase with increasing 5-fluorouracil. Translation of purified dihydrofolate reductase mRNA in vitro shows that the rate of translation is unaffected by 5-fluorouracil incorporation into mRNA. The inhibition of dihydrofolate reductase by a monospecific polyclonal antiserum is reduced with extracts from 5-fluorouracil-treated cells. Inhibition of dihydrofolate reductase by methotrexate is significantly reduced in extracts from 5-fluorouracil-treated cells compared to control extracts. Tight binding of [3H]methotrexate is also different in extracts from 5-fluorouracil-treated cells. This data supports the hypothesis of translational miscoding during protein synthesis as a major mechanism of 5-fluorouracil-mediated cytotoxicity and suggests a new mechanism of 5-fluorouracil-methotrexate antagonism.  相似文献   

14.
15.
We have developed a method to quantify (6-4) photoproducts in genes and other specific sequences within the genome. This approach utilizes the following two enzymes from Escherichia coli: ABC excinuclease, a versatile DNA repair enzyme which recognizes many types of lesions in DNA, and DNA photolyase, which reverts pyrimidine dimers. DNA is isolated from UV irradiated Chinese hamster ovary cells and digested with a restriction enzyme. Pyrimidine dimers, the major photoproduct produced at biological UV fluences, are then completely repaired by treatment with DNA photolyase. The photoreactivated DNA is treated with ABC excinuclease, electrophoresed in an alkaline agarose gel, transferred to a support membrane and probed for specific genomic sequences. Net incisions produced by ABC excinuclease following photoreactivation are largely due to the presence of (6-4) photoproducts. These adducts are quantitated by measuring the reduction of intensity of the full length fragments on the autoradiogram. Using this approach we have shown that (6-4) photoproducts are produced at equal frequency in the dihydrofolate reductase coding sequence and in its 3'-flanking, noncoding sequences and that the formation of (6-4) photoproducts is linear in both sequences up to a UV dose of 60 J/m2. The repair of (6-4) photoproducts in these DNA sequences was measured after a dose of 40 J/m2 over 4-, 8-, and 24-h time periods. The (6-4) photoproducts are repaired more efficiently than pyrimidine dimers in both sequences and there is preferential repair of (6-4) photoproducts in the dihydrofolate reductase gene compared with the downstream, noncoding sequences.  相似文献   

16.
Enhanced expression of mouse dihydrofolate reductase in Bacillus subtilis   总被引:6,自引:0,他引:6  
  相似文献   

17.
M E Fling  J Kopf  C A Richards 《Gene》1988,63(2):165-174
The nucleotide sequence of a DNA fragment that contained the Saccharomyces cerevisiae gene DFR coding for dihydrofolate reductase (DHFR) was determined. The DHFR was encoded by a 633-bp open reading frame, which specified an Mr24264 protein. The polypeptide was significantly related to the DHFRs of chicken liver and Escherichia coli. The yeast enzyme shared 60 amino acid (aa) residues with the avian enzyme and 51 aa residues with the bacterial enzyme. DHFR was overproduced about 40-fold in S. cerevisiae when the cloned gene was present in the vector YEp24. As isolated from the Saccharomyces library, the DFR gene was not expressed in E. coli. When the gene was present on a 1.8-kb BamHI-SalI fragment subcloned into the E. coli vector, pUC18, weak expression in E. coli was observed.  相似文献   

18.
Dismutation of dihydrofolate by dihydrofolate reductase   总被引:1,自引:0,他引:1  
R L Blakley  L Cocco 《Biochemistry》1984,23(11):2377-2383
Degradation of 7,8-dihydrofolate (H2folate) in the presence of dihydrofolate reductase (DHFR) has been shown due not to an oxygenase activity of the reductase as previously reported but to dismutation of H2folate to folate and 5,6,7,8-tetrahydrofolate (H4folate). The reaction can be followed spectrophotometrically or by analysis of the reaction mixture by high-performance liquid chromatography (HPLC). The products have also been isolated and characterized. Oxygen uptake during the reaction is much less than stoichiometric with H2folate disappearance and is attributed to autoxidation of the H4folate formed. The dismutation activity is a property of highly purified Streptococcus faecium DHFR isoenzyme 2 (but not isoenzyme 1) and of Lactobacillus casei DHFR, but not of bovine liver DHFR. The activity is dependent on tightly bound NADP+ and/or NADPH. Removal of the nucleotide results in loss of dismutation activity, which is restored by adding NADP+ or NADPH. Maximum activity is obtained when approximately 1 mol equiv of nucleotide is added per mol of DHFR. It is proposed that in the dismutation reaction bound NADP(H) is alternately reduced and oxidized by incoming molecules of H2folate with release of folate and H4folate, respectively. The relatively slow rate of folate formation presumably limits the rate of the overall reaction. The equilibrium constant for the dismutation reaction is 19.4 +/- 7.4 at 22 degrees C and pH 7.0. Calculation of standard oxidation-reduction potentials at pH 7 gave values of -0.230 V for the H2folate/H4 folate pair and -0.268 V for the folate/H2folate pair. The mechanism by which NADP+ is retained by the enzyme from some sources during purification procedures is unclear.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
We constructed mouse dihydrofolate reductase (DHFR) minigenes (dhfr) that had 1.5 kilobases of 5' flanking sequences and contained either none or only one of the intervening sequences that are normally present in the coding region. They were greater than or equal to 3.2 kilobase long, about one-tenth the size of the corresponding chromosomal gene. Both of these minigenes complemented the DHFR deficiency in Chinese hamster ovary dhfr-1-cells at a high frequency after DNA-mediated gene transfer. The level of DHFR enzyme in various transfected clones varied over a 10-fold range but never was as high as in wild-type Chinese hamster ovary cells. In addition, the level of DHFR in primary transfectants did not vary directly with the copy number of the minigene, which ranged from fewer than five to several hundred per genome. The minigenes could be amplified to a level of over 2,000 copies per genome upon selection in methotrexate, a specific inhibitor of DHFR. In one case, the amplified minigenes were present in a tandem array; in two other cases, a rearranged minigene plasmid and its flanking chromosomal DNA sequence were amplified. Thus, the mouse dhfr minigenes could be transcribed, expressed, and amplified in Chinese hamster ovary cells, although the efficiency of expression was generally low. The key step in the construction of these minigenes was the generation in vivo of lambda phage recombinants by overlapping regions of homology between genomic and cDNA clones. The techniques used here for dhfr should be generally applicable to any gene, however large, and could be used to generate novel genes from members of multigene families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号