首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the evolution of animal signals has to include consideration of the structure of signal and noise, and the sensory mechanisms that detect the signals. Considerable progress has been made in understanding sounds and colour signals, however, the degree to which movement-based signals are constrained by the particular patterns of environmental image motion is poorly understood. Here we have quantified the image motion generated by wind-blown plants at 12 sites in the coastal habitat of the Australian lizard Amphibolurus muricatus. Sampling across different plant communities and meteorological conditions revealed distinct image motion environments. At all locations, image motion became more directional and apparent speed increased as wind speeds increased. The magnitude of these changes and the spatial distribution of image motion, however, varied between locations probably as a function of plant structure and the topographic location. In addition, we show that the background motion noise depends strongly on the particular depth-structure of the environment and argue that such microhabitat differences suggest specific strategies to preserve signal efficacy. Movement-based signals and motion processing mechanisms, therefore, may reveal the same type of habitat specific structural variation that we see for signals from other modalities.  相似文献   

2.
3.
Animal signals are optimized for particular signaling environments [1-3]. While signaling, senders often choose favorable conditions that ensure reliable detection and transmission [4-8], suggesting that they are sensitive to changes in signal efficacy. Recent evidence has also shown that animals will increase the amplitude or intensity of their acoustic signals at times of increased environmental noise [9-11]. The nature of these adjustments provides important insights into sensory processing. However, only a single piece of correlative evidence for signals defined by movement suggests that visual-signal design depends on ambient motion noise [12]. Here we show experimentally for the first time that animals communicating with movement will adjust their displays when environmental motion noise increases. Surprisingly, under sustained wind conditions, the Australian lizard Amphibolurus muricatus changed the structure and increased the duration of its introductory tail flicking, rather than increasing signaling speed. The way these lizards restructure the alerting component of their movement-based aggressive display in the presence of increased motion noise highlights the challenge we face in understanding motion-detection mechanisms under natural operating conditions.  相似文献   

4.
In animal communication, complex displays usually have multiple functions and, male and female receivers often differ in their utilization and response to different aspects of these displays. The perceptual variability hypothesis suggests that different aspects of complex signals differ in their ability to be detected and processed by different receivers. Here, we tested whether receiver male and female Sceloporus graciosus lizards differ in visual motion detection by measuring the latency to the visual grasp response to a motion stimulus. We demonstrate that in lizards that largely exhibit complex motions as courtship signals, female lizards are faster than males at visually detecting motion. These results highlight that differential signal utilization by the sexes may be driven by variability in the capacity to detect different display properties.  相似文献   

5.
Visual systems are typically selective in their response to movement. This attribute facilitates the identification of functionally important motion events. Here we show that the complex push-up display produced by male Jacky dragons ( Amphibolurus muricatus) is likely to have been shaped by an interaction between typical signalling conditions and the sensory properties of receivers. We use novel techniques to define the structure of the signal and of a range of typical moving backgrounds in terms of direction, speed, acceleration and sweep area. Results allow us to estimate the relative conspicuousness of each motor pattern in the stereotyped sequence of which displays are composed. The introductory tail-flick sweeps a large region of the visual field, is sustained for much longer than other components, and has velocity characteristics that ensure it will not be filtered in the same way as wind-blown vegetation. These findings are consistent with the idea that the tail-flick has an alerting function. Quantitative analyses of movement-based signals can hence provide insights into sensory processes, which should facilitate identification of the selective forces responsible for structure. Results will complement the detailed models now available to account for the design of static visual signals.  相似文献   

6.
In this study, we investigated the feasibility of applying neural networks to understanding movement-based visual signals. Networks based on three different models were constructed, varying in their input format and network architecture: a Static Input model, a Dynamic Input model and a Feedback model. The task for all networks was to distinguish a lizard (Amphibolurus muricatus) tail-flick from background plant movement. Networks based on all models were able to distinguish the two types of visual motion, and generalised successfully to unseen exemplars. We used curves defined by the receiver-operating characteristic (ROC) to select a single network from each model to be used in regression analyses of network response and several motion variables. Collectively, the models predicted that tail-flick efficacy would be enhanced by faster speeds, greater acceleration and longer durations.  相似文献   

7.
Resource value and the context dependence of receiver behaviour   总被引:1,自引:0,他引:1  
Many animals use signals of fighting ability to minimize the costs of competition. Theory predicts that signals must be costly to remain reliable indicators of their bearer's abilities, but many signals of fighting ability lack obvious developmental costs. Instead, receivers are thought to maintain signal accuracy by behaving aggressively towards individuals with inaccurate signals (i.e. social costs). Models predict that the evolutionary stability of social cost signals depends on receivers trusting signals in certain contexts and testing signal accuracy in other contexts. Here, I use the signals of agonistic ability in Polistes dominulus wasps to provide the first experimental evidence that receiver responses to social cost signals are context dependent. During contests over low-value resources, wasps trust signals; they avoid patches of food guarded by rivals with elaborate signals. As the value of the resource increases, wasps become more likely to test signal accuracy. In fact, receivers challenge guards regardless of their signal phenotype when the resource is sufficiently valuable. Context-dependent receiver responses are likely to be an important behavioural mechanism underlying the evolution of social costs, as context-dependent responses allow receivers to minimize the costs of conflict while also ensuring signal accuracy.  相似文献   

8.
It has been suggested that the evolution of signals must be a wasteful process for the signaller, aimed at the maximization of signal honesty. However, the reliability of communication depends not only on the costs paid by signallers but also on the costs paid by receivers during assessment, and less attention has been given to the interaction between these two types of costs during the evolution of signalling systems. A signaller and receiver may accept some level of signal dishonesty by choosing signals that are cheaper in terms of assessment but that are stabilized with less reliable mechanisms. I studied the potential trade‐off between signal reliability and the costs of signal assessment in the corncrake (Crex crex). I found that the birds prefer signals that are less costly regarding assessment rather than more reliable. Despite the fact that the fundamental frequency of calls was a strong predictor of male size, it was ignored by receivers unless they could directly compare signal variants. My data revealed a response advantage of costly signals when comparison between calls differing with fundamental frequencies is fast and straightforward, whereas cheap signalling is preferred in natural conditions. These data might improve our understanding of the influence of receivers on signal design because they support the hypothesis that fully honest signalling systems may be prone to dishonesty based on the effects of receiver costs and be replaced by signals that are cheaper in production and reception but more susceptible to cheating.  相似文献   

9.
Anolis lizards communicate with displays consisting of motion of the head and body. Early portions of long-distance displays require movements that are effective at eliciting the attention of potential receivers. We studied signal-motion efficacy using a two-dimensional visual-motion detection (2DMD) model consisting of a grid of correlation-type elementary motion detectors. This 2DMD model has been shown to accurately predict Anolis lizard behavioural response. We tested different patterns of artificially generated motion and found that an abrupt 0.3° shift of position in less than 100 ms is optimal. We quantified motion in displays of 25 individuals from five species. Four species employ near-optimal movement patterns. We tested displays of these species using the 2DMD model on scenes with and without moderate wind. Display movements can easily be detected, even in the presence of windblown vegetation. The fifth species does not typically use the most effective display movements and display movements cannot be discerned by the 2DMD model in the presence of windblown vegetation. A number of Anolis species use abrupt up-and-down head movements approximately 10 mm in amplitude in displays, and these movements appear to be extremely effective for stimulating the receiver visual system.  相似文献   

10.
Recent models of signaling have assumed that the expenditure required to ensure detection of a display is negligible and have concentrated instead on the costs that may be necessary to maintain honesty. Such models predict that individuals who share the same interests are likely to communicate using “conspiratorial whispers,” signals that are cheap and inconspicuous. Here, I present a game-theoretical model of signal detection (in a noisy environment, in the presence of potential eavesdroppers), which demonstrates that the idea of conspiratorial whispers is far too simplistic. It is true that in “cooperative” signaling systems (where signalers attempt to elicit responses that are beneficial for receivers), signal cost is not required to maintain honesty. However, some level of expenditure is still needed to ensure that a signal is reliably detected. Moreover, there exists a conflict of interest between signalers and receivers over the division of this expenditure. To predict the stable level of display in such cases, one needs to know how this conflict of interest will be resolved. The model reveals that the outcome may range from a whisper to a conspicuous and costly (though still conspiratorial) display. The more closely related the receiver is to the signaler, the greater the level of signal exaggeration that is expected—the opposite prediction to that of honest signaling models.  相似文献   

11.
Rowe C 《Animal behaviour》1999,58(5):921-931
Many animals produce and respond to signals made up of multiple components. For example, many avian sexual displays are highly extravagant combinations of visual and acoustic elements, and are described as being 'multicomponent'. One possible reason for the evolution of such complex signals is that they provide more reliable information for receivers. However, receivers also influence signal evolution in another important way, by how they perceive and process signals: signallers will be selected to produce signals that are more easily received. The potential role of receiver psychology in the evolution of multicomponent signals has not previously been considered; in this review I present psychological results that support the notion that two components are better received than one alone. Detection can be improved by producing two components together, thus reducing the reaction time, increasing the probability of detection and lowering the intensity at which detection occurs. Discriminability of multicomponent stimuli is also made easier through better recognition, faster discrimination learning and multidimensional generalization. In addition, multicomponent stimuli also improve associative learning. I show that multicomponency does indeed improve signal reception in receivers, although the benefits of producing components in two sensory modalities (bimodal multicomponent signals) may be larger and more robust than producing them in just one (unimodal multicomponent signals). This highlights the need for consideration of receiver psychology in the evolution of multicomponent signals, and suggests that where signal components do not appear to be informative, they may instead be performing an important psychological function. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

12.
Many models of honest signaling, based on Zahavi's handicap principle, predict that if receivers are interested in a quality that shows continuous variation across the population of signalers, then the distribution of signal intensities will also be continuous. However, it has previously been noted that this prediction does not agree with empirical observation in many signaling systems, where signals are limited to a small number of levels despite continuous variation in the trait being signaled. Typically, there is a critical value of the trait, with all individuals with trait values on one side of the threshold using the same cheap signal, and all those with trait values on the other side of the threshold using the same expensive signal. It has already been demonstrated that these classical models naturally predict such "all-or-nothing signaling" if it is additionally assumed that receivers suffer from perceptual error in evaluating signal strength. We show that such all-or-nothing signaling is also predicted if receivers are limited to responding to the signals in one of two ways. We suggest that many ecological situations (such as the decision to attack the signaler or not, or mate with the signaler or not) involve such binary choices.  相似文献   

13.
Many models of animal signal evolution fail to incorporate an explicit strategy for receivers prior to the evolution of signals. When reasonable assumptions are made for such strategies, we have shown that there is a minimal accuracy of signal coding that is required before receivers should attend to signals (Bradbury & Vehrencamp 1998, Principles of Animal Communication). Depending upon the relative payoffs of correct and incorrect decisions by receivers, this minimal accuracy can be quite high. Here we use this result to explain why so many signals appear to be traits that provided useful information to receivers before becoming ritualized into signals. Our model also supports one prediction of sensory drive models: that latent preferences may selectively favour some signal precursors over others. However, it imposes a serious constraint on sensory drive by requiring that there be sufficient benefits to a receiver to compensate for the costs of disrupting the optimal receiver strategy used before exploitation. Finally, we discuss the overlap between signal honesty and accuracy and show how senders that completely disagree with receivers about appropriate receiver decisions may still benefit by providing moderately honest and accurate signals. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

14.
High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.  相似文献   

15.
To be effective, signals must propagate through the environment and be detected by receivers. As a result, signal form evolves in response to both the constraints imposed by the transmission environment and receiver perceptual abilities. Little work has examined the extent to which signals may act as selective forces on receiver sensory systems to improve the efficacy of communication. If receivers benefit from accurate signal assessment, selection could favour sensory organs that improve discrimination of established signals. Here, we provide evidence that visual resolution coevolves with visual signals in Polistes wasps. Multiple Polistes species have variable facial patterns that function as social signals, whereas other species lack visual signals. Analysis of 19 Polistes species shows that maximum eye facet size is positively associated with both eye size and presence of visual signals. Relatively larger facets within the eye''s acute zone improve resolution of small images, such as wasp facial signals. Therefore, sensory systems may evolve to optimize signal assessment. Sensory adaptations to facilitate signal detection may represent an overlooked area of the evolution of animal communication.  相似文献   

16.
Animals often use assessment signals to communicate information about their quality to a variety of receivers, including potential mates, competitors, and predators. But what maintains reliable signaling and prevents signalers from signaling a better quality than they actually have? Previous work has shown that reliable signaling can be maintained if signalers pay fitness costs for signaling at different intensities and these costs are greater for lower quality individuals than higher quality ones. Models supporting this idea typically assume that continuous variation in signal intensity is perceived as such by receivers. In many organisms, however, receivers have threshold responses to signals, in which they respond to a signal if it is above a threshold value and do not respond if the signal is below the threshold value. Here, we use both analytical and individual-based models to investigate how such threshold responses affect the reliability of assessment signals. We show that reliable signaling systems can break down when receivers have an invariant threshold response, but reliable signaling can be rescued if there is variation among receivers in the location of their threshold boundary. Our models provide an important step toward understanding signal evolution when receivers have threshold responses to continuous signal variation.  相似文献   

17.
Casualties and impediments inflicted on consumers by defended prey, and vice versa, may be averted by vocalizations, postures, coloration, scents, and other warning, or so‐called aposematic, displays. The existence of aposematic signals has challenged biologists who have sought plausible mechanisms for their evolution. Here, we elaborate on the rationale for the hypothesis that aposematic signals arise via concurrent reciprocal selection (CRS) enacted between inimical signal receivers and signal emitters, where signal emitters, e.g., defended prey, select against non‐discriminating signal receivers, e.g., predators, and signal receivers select against unrecognized signal emitters. It is postulated that this mutual selective interaction culminates in the survival of discriminating signal receivers that avoid signal emitters, and recognized (distinctive) signal emitters that are avoided by signal receivers. A CRS hypothesis for the evolution of aposematism, therefore, maintains that distinctive features of prey arise in response to selection imposed by consumers, and that avoidances of those features by consumers arise in response to selection imposed by defended prey. We discuss the plausible inception of aposematism via CRS in light of related hypotheses, and describe points of concordance with previous observations and suggestions on the origin of aposematism. Aposematism arising via CRS is not contingent upon the relatedness of signallers, aversions acquired by learning, or other conditions postulated for some other evolutionary hypotheses. CRS is a credible alternative hypothesis for the evolution of warning signals in diverse consumer‐prey interactions.  相似文献   

18.
Ilany A  Barocas A  Koren L  Kam M  Geffen E 《PloS one》2011,6(12):e28612
Signal detection theory predicts that signals directed at distant or busy receivers in noisy backgrounds will begin with an alert component, in order to draw attention. Instead of an alert component, however, animals could get the same effect by using an external stimulus. Here we combined observations of free-living rock hyraxes (Procavia capensis) with playback experiments to elucidate the circumstances under which males begin singing. We show that males sing following hyrax pup screams, which elicit a strong response from hyraxes within hearing distance, which are potential receivers. We hypothesize that singers enhance their singing display by exploiting the rarely emitted pup screams. To our knowledge, our findings are the first indication that animals may enhance signal reception by exploiting conspecifics' signals and the differential attention to these signals. We suggest that the utilization of external stimuli by signalers may be widespread, as an adaptive strategy for communication in complex environments.  相似文献   

19.
In many species, it is common for animals to have multiple signals within one channel of communication. Multiple signals may, however, be inefficient if they are redundant in nature. Identifying the functional significance of these multiple signals is therefore important if we are to understand the evolution of such elaborated behaviours. We proposed to identify the roles of movement-based multiple signals in a model animal system. Male fiddler crabs wave their sexually dimorphic enlarged claw during social interactions. Some species present multiple signals, where the level of complexity of the movement changes. Males of Austruca mjoebergi can perform a double wave consisting of a high- followed by a low-elevation lifting of the claw, or a single wave consisting of the high-elevation movement alone. We first investigated structural differences between the double and single wave types, and found that single waves were lower in elevation than double waves. We then explored the adaptive meaning of the wave types by manipulating the social context in which males wave. We found that double waves were given in all contexts and in higher proportions at long distances, suggesting a function of broadcasting male location. Single waves, on the other hand, were mainly given at close range and in the presence of conspecifics, suggesting intraspecific communication. Female presence elicited the highest number and proportion of single waves, a likely result of a female preference for higher wave rates. Finally, we point out that there is an element of interaction between wave types that deserves future attention. This paper is an important contribution to expand our understanding of the adaptive meaning of multiple visual signals and help reach a unified theory of their evolution.  相似文献   

20.
Animal signals are inherently complex phenotypes with many interacting parts combining to elicit responses from receivers. The pattern of interrelationships between signal components reflects the extent to which each component is expressed, and responds to selection, either in concert with or independently of others. Furthermore, many species have complex repertoires consisting of multiple signal types used in different contexts, and common morphological and physiological constraints may result in interrelationships extending across the multiple signals in species’ repertoires. The evolutionary significance of interrelationships between signal traits can be explored within the framework of phenotypic integration, which offers a suite of quantitative techniques to characterize complex phenotypes. In particular, these techniques allow for the assessment of modularity and integration, which describe, respectively, the extent to which sets of traits covary either independently or jointly. Although signal and repertoire complexity are thought to be major drivers of diversification and social evolution, few studies have explicitly measured the phenotypic integration of signals to investigate the evolution of diverse communication systems. We applied methods from phenotypic integration studies to quantify integration in the two primary vocalization types (advertisement and aggressive calls) in the treefrogs Hyla versicolor, Hyla cinerea, and Dendropsophus ebraccatus. We recorded male calls and calculated standardized phenotypic variance–covariance ( P ) matrices for characteristics within and across call types. We found significant integration across call types, but the strength of integration varied by species and corresponded with the acoustic similarity of the call types within each species. H. versicolor had the most modular advertisement and aggressive calls and the least acoustically similar call types. Additionally, P was robust to changing social competition levels in H. versicolor. Our findings suggest new directions in animal communication research in which the complex relationships among the traits of multiple signals are a key consideration for understanding signal evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号