首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type‐IV secretion system. Injected CagA becomes tyrosine‐phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high‐resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence‐associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ‘master key’ that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin‐cytoskeletal rearrangements and the disruption of cell‐to‐cell junctions as well as proliferative, pro‐inflammatory and anti‐apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon.  相似文献   

2.
Helicobacter pylori type I strains harbour the cag pathogenicity island (cag-PAI), a 37 kb sequence,which encodes the components of a type IV secretion system. CagA, the first identified effector protein of the cag-PAI, is translocated into eukaryotic cells and tyrosine phosphorylated (CagAP-tyr) by a host cell tyrosine kinase. Translocation of CagA induces the dephosphorylation of a set of phosphorylated host cell proteins of unknown identity. CagA proteins of independent H. pylori strains vary in sequence and thus in the number and composition of putative tyrosine phosphorylation motifs (TPMs). The CagA protein of H. pylori strain J99 (CagAJ99) does not carry any of three putative tyrosine phosphorylation motifs (TPM-A, TPM-B or TPM-C) predicted by the MOTIF algorithm in CagA proteins. CagA,n is not tyrosine phosphorylated and is inactive in the dephosphorylation of host cell proteins. By site-specific mutagenesis,we introduced a TPM-C into CagA,. by replacing a single lysine with a tyrosine. This slight modification resulted in tyrosine phosphorylation of CagAJ99 and host cell protein dephosphorylation. In contrast, the removal of the indigenous TPM-C from CagAP12 did not abolish its tyrosine phosphorylation, suggesting that further phosphorylated sites are present in CagAP12. By generation of hybrid CagA proteins, a phosphorylation of the most N-terminal TPM-A could be excluded. Our data suggest that tyrosine phosphorylation at TPM-C is sufficient, but not exclusive,to activate translocated CagA. Activated CagAPtr might either convert into a phosphatase itself or activate a cellular phosphatase to dephosphorylate cellular phosphoproteins and modulate cellular signalling cascades of the host.  相似文献   

3.
Type I strains of Helicobacter pylori (Hp) use a type IV secretion system (T4SS), encoded by the cag pathogenicity island (cag-PAI), to deliver the bacterial protein CagA into eukaryotic cells and to induce interleukin-8 secretion. Translocated CagA is activated by tyrosine phosphorylation involving Src-family kinases. The mechanism and structural basis for type IV protein secretion is not well understood. We describe here, by confocal laser scanning microscopy and field emission scanning electron microscopy, a novel filamentous surface organelle which is part of the Hp T4SS. The organelle is often located at one bacterial pole but can be induced by cell contact also along the lateral side of the bacteria. It consists of a rigid needle, covered focally or completely by HP0527 (Cag7 or CagY), a VirB10-homologous protein. HP0527 is also clustered in the outer membrane. The VirB7-homologous protein HP0532 is found at the base of this organelle. These observations demonstrate for the first time by microscopic techniques a complex T4SS-associated, sheathed surface organelle reminiscent to the needle structures of bacterial type III secretion systems.  相似文献   

4.
Tyrosine phosphorylation is a key device in numerous cellular functions in eukaryotes, but in bacteria this protein modification was largely ignored until the mid-1990s. The first conclusive evidence of bacterial tyrosine phosphorylation came only a decade ago. Since then, several tyrosine kinases exhibiting unexpected features have been identified in a variety of bacteria. These enzymes use homologues of Walker motifs of nucleotide-binding proteins for their catalytic mechanism, thus defining an idiosyncratic type of bacterial tyrosine kinases. Recently, bacterial tyrosine kinases have been found to phosphorylate an increasing list of endogenous protein substrates. This discovery contributes to the emerging picture that bacterial tyrosine phosphorylation is an important regulatory arsenal of bacterial physiology in addition to the classical serine/threonine kinases, and the 'two-component' and phosphotransferase systems.  相似文献   

5.
The gastric pathogen Helicobacter pylori translocates the CagA protein into epithelial cells by a type IV secretion process. Translocated CagA is tyrosine phosphorylated (CagA(P-Tyr)) on specific EPIYA sequence repeats by Src family tyrosine kinases. Phos phorylation of CagA induces the dephosphorylation of as yet unidentified cellular proteins, rearrangements of the host cell actin cytoskeleton and cell scattering. We show here that CagA(P-Tyr) inhibits the catalytic activity of c-Src in vivo and in vitro. c-Src inactivation leads to tyrosine dephosphorylation of the actin binding protein cortactin. Concomitantly, cortactin is specifically redistributed to actin-rich cellular protrusions. c-Src inactivation and cortactin dephosphorylation are required for rearrangements of the actin cytoskeleton. Moreover, CagA(P-Tyr)-mediated c-Src inhibition downregulates further CagA phosphorylation through a negative feedback loop. This is the first report of a bacterial virulence factor that inhibits signalling of a eukaryotic tyrosine kinase and on a role of c-Src inactivation in host cell cytoskeletal rearrangements.  相似文献   

6.
While phosphotyrosine modification is an established regulatory mechanism in eukaryotes, it is less well characterized in bacteria due to low prevalence. To gain insight into the extent and biological importance of tyrosine phosphorylation in Escherichia coli, we used immunoaffinity-based phosphotyrosine peptide enrichment combined with high resolution mass spectrometry analysis to comprehensively identify tyrosine phosphorylated proteins and accurately map phosphotyrosine sites. We identified a total of 512 unique phosphotyrosine sites on 342 proteins in E. coli K12 and the human pathogen enterohemorrhagic E. coli (EHEC) O157:H7, representing the largest phosphotyrosine proteome reported to date in bacteria. This large number of tyrosine phosphorylation sites allowed us to define five phosphotyrosine site motifs. Tyrosine phosphorylated proteins belong to various functional classes such as metabolism, gene expression and virulence. We demonstrate for the first time that proteins of a type III secretion system (T3SS), required for the attaching and effacing (A/E) lesion phenotype characteristic for intestinal colonization by certain EHEC strains, are tyrosine phosphorylated by bacterial kinases. Yet, A/E lesion and metabolic phenotypes were unaffected by the mutation of the two currently known tyrosine kinases, Etk and Wzc. Substantial residual tyrosine phosphorylation present in an etk wzc double mutant strongly indicated the presence of hitherto unknown tyrosine kinases in E. coli. We assess the functional importance of tyrosine phosphorylation and demonstrate that the phosphorylated tyrosine residue of the regulator SspA positively affects expression and secretion of T3SS proteins and formation of A/E lesions. Altogether, our study reveals that tyrosine phosphorylation in bacteria is more prevalent than previously recognized, and suggests the involvement of phosphotyrosine-mediated signaling in a broad range of cellular functions and virulence.  相似文献   

7.
Activation of T lymphocytes leads to the production of the T cell growth factor IL-2 that regulates T cell proliferation. This activation is associated with several potential intracellular signalling events including increased activity of phospholipase C (PLC) and resultant increases in production of inositol phosphates and diacylglycerols. In addition, phosphorylation of specific intracellular proteins on serine, threonine, and tyrosine residues increases. The role of each of these events in IL-2 production is unclear. Using Western blotting with antiphosphotyrosine antibodies, we demonstrate that activation of murine T cells with mitogenic lectins or anti-CD3 antibodies leads to a rapid increase in tyrosine phosphorylation of proteins of 120, 72, 62, 55, and 40 kDa. Similar patterns of antiphosphotyrosine antibodies reactivity were observed in splenocytes, a T cell hybridoma, and a T lymphoma. Tyrosine phosphorylation was detectable within minutes of addition of mitogenic lectins and persisted for at least 6 h. Pretreatment of the cells with pertussis toxin did not inhibit tyrosine phosphorylation indicating that a pertussis toxin-sensitive G protein is not involved in signal transduction. Neither increasing cytosolic-free calcium nor activating protein kinase C mimicked the effects of mitogenic lectins suggesting that tyrosine phosphorylation was not a consequence of activation of PLC. This was confirmed by demonstrating that mitogenic lectins induced similar patterns of tyrosine phosphorylation in cells in which activation of the TCR leads to increased PLC activity and in cells in which PLC is not stimulated. To test whether tyrosine phosphorylation is linked to IL-2 secretion, we determined the effect of three specific tyrosine kinase inhibitors (tyrphostins) on tyrosine phosphorylation, IL-2 secretion, and cellular proliferation. The concentration dependence of inhibition of tyrosine phosphorylation and IL-2 production were similar. However, higher concentrations of the tyrphostins were required to inhibit constitutive proliferation of the T cell line indicating that inhibition of IL-2 secretion was not secondary to nonspecific toxic effects of the tyrphostins. Addition of the tyrphostins after mitogenic lectin decreased the amount of tyrosine phosphorylation and IL-2 secretion in parallel. This indicates that both tyrosine kinases and phosphatases are activated and that continuous tyrosine phosphorylation is likely required for IL-2 secretion. Therefore, tyrosine phosphorylation appears to represent an obligatory event in the transmembrane signaling processes that lead to IL-2 secretion.  相似文献   

8.
Helicobacter pylori is one of the most common bacterial pathogens, infecting about 50% of the world population. The presence of a pathogenicity island (PAI) in H. pylori has been associated with gastric disease. We present evidence that the H. pylori protein encoded by the cytotoxin-associated gene A ( cagA ) is translocated and phosphorylated in infected epithelial cells. Two-dimensional gel electrophoresis (2-DE) of proteins isolated from infected AGS cells revealed H. pylori strain-specific and time-dependent tyrosine phosphorylation and dephosphorylation of several 125–135 kDa and 75–80 kDa proteins. Immunoblotting studies, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), cell fractionation and confocal microscopy demonstrated that one of the 125–135 kDa proteins represents the H. pylori CagA protein, which is translocated into the host cell membrane and the cytoplasm. Translocation of CagA was dependent on functional cagA gene and virulence ( vir ) genes of a type IV secretion apparatus composed of virB4 , virB7 , virB10 , virB11 and virD4 encoded in the cag PAI of H. pylori . Our findings support the view that H. pylori actively translocates virulence determinants, including CagA, which could be involved in the development of a variety of gastric disease.  相似文献   

9.
Anaplasma phagocytophilum is an intracellular pathogen that infects and survives in neutrophilic granulocytes. The A. phagocytophilum genome encodes a type four secretion system (T4SS) that may facilitate intracellular survival by translocation of virulence factors, but to date, no such factors have been identified. Because T4SS-translocated proteins of several intracellular organisms undergo tyrosine phosphorylation by host cell kinases, we investigated tyrosine phosphorylation of A. phagocytophilum proteins during infection. Within minutes after incubation of A. phagocytophilum with HL-60 cells or PMN, a 190 kDa bacterial protein, AnkA, was increasingly tyrosine-phosphorylated. A. phagocytophilum binding to host cells without entry was sufficient for AnkA tyrosine phosphorylation. An in vitro Src kinase assay demonstrated that purified AnkA expressed in Escherichia coli was phosphorylated at tyrosines located at the C-terminal portion of AnkA. Similarly, AnkA expressed in COS-7 cells underwent tyrosine phosphorylation by Src at the C-terminus. The phosphorylated tyrosines were located in EPIYA motifs that display the consensus sequence for binding to SH2 domains. Immunoprecipitation studies demonstrated AnkA binding to the host cell phosphatase SHP-1 during early infection. Phosphorylation of the EPIYA motifs and the presence of the SH2 domains were necessary for AnkA-SHP-1 interaction. We conclude that AnkA is a translocated virulence factor that is tyrosine-phosphorylated by host cell kinases upon translocation into the host cell early during infection. A. phagocytophilum may manipulate the host cell through SHP-1 recruitment.  相似文献   

10.
Recent advances in mass spectrometry allowed the charting of bacterial serine/threonine/tyrosine phosphoproteomes with unprecedented accuracy, including the acquisition of a large number of phosphorylation sites. Phosphorylated bacterial proteins are involved in some key housekeeping processes, and their phosphorylation is expected to play an important regulatory role. When coupled to stable isotope labeling by amino acids in cell culture (SILAC), high-resolution mass spectrometry allows the detection of changes in the occupancy of phosphorylation sites in response to various stimuli. This and similar approaches promise to lead bacterial phosphoproteomics into the era of systems biology, where the entire phosphorylation-based regulatory networks will be charted, modelled, and ultimately engineered to obtain desired properties.  相似文献   

11.
Some tea polyphenolic compounds including (-)-epigallocatechin gallate (EGCG) have been shown to inhibit histamine release from mast cells through poorly understood mechanisms. By using a mast cell model rat basophilic leukemia (RBL-2H3) cells we explored the mechanism of the inhibition. EGCG inhibited histamine release from RBL-2H3 cells in response to antigen or the calcium-ionophore A23187, while (-)-epicatechin (EC) had little effect. Increased tyrosine phosphorylation of several proteins including approximately 120 kDa proteins occurred in parallel with the secretion induced by either stimulation. EGCG also inhibited tyrosine phosphorylation of the approximately 120-kDa proteins induced by either stimulation, whereas EC did not. The tyrosine kinase-specific inhibitor piceatannol inhibited the secretion and tyrosine phosphorylation of these proteins induced by either stimulation also. Further analysis showed that the focal adhesion kinase pp125(FAK) was one of the approximately 120-kDa proteins. These findings suggest that EGCG prevents histamine release from mast cells mainly by inhibiting tyrosine phosphorylation of proteins including pp125(FAK).  相似文献   

12.
Recent studies have revealed a distinct class of bacterial effectors defined by the presence of EPIYA or EPIYA‐related motif. These bacterial EPIYA effectors are delivered into host cells via type III or IV secretion, where they undergo tyrosine phosphorylation at the EPIYA motif and thereby manipulate host signalling by promiscuously interacting with multiple SH2 domain‐containing proteins. Up to now, nine EPIYA effectors have been identified from various bacteria. These effectors do not share sequence homology outside the EPIYA motif, arguing against the idea that they have common ancestors. A search of mammalian proteomes revealed the presence of a mammalian EPIYA‐containing protein, Pragmin, which potentiates Src family kinase (SFK) activity by binding and sequestrating the SFK inhibitor Csk upon EPIYA phosphorylation. As several bacterial EPIYA effectors also target Csk, they may have evolved through generation of sequences that mimic the Pragmin EPIYA motif. EPIYA motifs are often diverged through multiple duplications in each bacterial effector. Such a structural plasticity appears to be due to intrinsic disorder of the EPIYA‐containing region, which enables the bacterial effectors to undergo efficient phosphorylation and mediate promiscuous interaction with multiple host proteins. Given the functional versatility of the EPIYA motif, many more bacterial EPIYA effectors will soon be emerging.  相似文献   

13.
Plant cells have two defense systems that detect bacterial pathogens. One is a basal defense system that recognizes complex pathogen-associated molecular patterns (PAMPs). A second system uses disease-resistance (R) proteins to recognize type lll effector proteins that are delivered into the plant cell by the pathogen's type III secretion system. Here we show that these two pathways are linked. We find that two Pseudomonas syringae type III effectors, AvrRpt2 and AvrRpm1, inhibit PAMP-induced signaling and thus compromise the host's basal defense system. RIN4 is an Arabidopsis protein targeted by AvrRpt2 and AvrRpm1 for degradation and phosphorylation, respectively. We find that RIN4 is itself a regulator of PAMP signaling. The R proteins, RPS2 and RPM1, sense type III effector-induced perturbations of RIN4. Thus, R proteins guard the plant against type III effectors that inhibit PAMP signaling and provide a mechanistic link between the two plant defense systems.  相似文献   

14.
Many Gram-negative pathogenic bacteria possess type-III or type-IV secretion systems to inject 'effector' proteins directly into host cells to modulate cellular processes in their favour. A common target is the actin-cytoskeleton linked to the delivery of a single (CagA) effector by Helicobacter pylori and multiple effectors by enteropathogenic Escherichia coli (EPEC) respectively. Here we report co-infection as a powerful strategy for defining effector protein function and mechanisms by which they modulate cellular responses. This is exemplified by our finding that EPEC inhibits H. pylori -induced AGS cell elongation, a disease-related event linked to Rac1 activation. While this inhibitory process is dependent on the translocated Intimin receptor, Tir, and the outer-membrane protein, Intimin, it unexpectedly revealed evidence for Tir signalling independent of Intimin interaction and tyrosine phosphorylation of Tir. Furthermore, the work defined a long awaited role for protein kinase A (PKA)-mediated phosphorylation of Tir at serine-434 and serine-463. Our data are consistent with a model whereby EPEC activates PKA for Tir phosphorylation. Activated PKA then phosphorylates Rac1 at serine-71 associated with reduced GTP-load and inhibited cell elongation. Thus, the co-infection approach is a powerful strategy for defining novel effector function with important implications for characterizing mechanisms and regulatory signalling pathways in bacterial pathogenesis.  相似文献   

15.
Upon attachment to cultured HeLa cells, enteropathogenic Escherichia coli (EPEC) induces assembly of a complex cytoskeletal structure within the eucaryotic cell, localized beneath the adherent bacterium. In addition, EPEC induces its own internalization by non-phagocytic epithelial cells. We found that after binding to the epithelial cell surface, EPEC induces tyrosine phosphorylation of three eucaryotic proteins. The major phosphorylation substrate is a 90 kDa protein (Hp90). In correlation with Hp90 tyrosine phosphorylation, the EPEC-induced cytoskeletal structure also contained tyrosine phosphorylated proteins. Using tyrosine protein kinase inhibitors and EPEC mutants (cfm) that fail to induce Hp90 phosphorylation, we demonstrate that induction of Hp90 phosphorylation is involved in initiation of the cytoskeletal structure assembly and in bacterial uptake. Other non-invasive EPEC mutants (eae) are still able to induce Hp90 tyrosine phosphorylation and to initiate aggregation of the tyrosine phosphorylated proteins and some cytoskeleton components. However, eae mutants are deficient in nucleating the aggregates into an organized structure.  相似文献   

16.
17.
Helicobacter pylori is a paradigm of persistent pathogens and major risk factor for developing severe diseases including adenocarcinoma in the human stomach. An important bacterial factor linked to gastric disease progression is the cag pathogenicity island‐encoded type‐IV secretion system (T4SS) effector protein CagA. Translocated CagA undergoes tyrosine phosphorylation at EPIYA‐motifs and then activates or inactivates multiple host signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent fashion. In this way, intracellular CagA acts as a ‘masterkey’ or ‘picklock’, which evolved during evolution to hijack key host cell signal transduction functions. Crucial targets of CagA represent a variety of serine/threonine and tyrosine kinases, which control major checkpoints of eukaryotic signaling. Here we review the signal transmission by translocated CagA on multiple receptor kinases (c‐Met and EGFR) and non‐receptor kinases (Src, Abl, Csk, aPKC, Par1, PI3K, Akt, FAK, GSK‐3, JAK, PAK1, PAK2 and MAP kinases), manipulating a selection of fundamental processes in the human gastric epithelium such as cell adhesion, polarity, proliferation, motility, receptor endocytosis, cytoskeletal rearrangements, apoptosis, inflammation and cell cycle progression. This enormous complexity generates a highly remarkable and puzzling scenario during H. pylori infection. The contribution of these signaling pathways to bacterial survival, persistence and gastric pathogenesis is discussed.  相似文献   

18.
Growth hormone (GH) influences a number of tissue-specific biological activities in diverse cell types. However, little is known about the biochemical pathway by which the signal initiated by GH binding to its cell-surface receptor is transduced. The GH receptor has been reported to be phosphorylated on tyrosine in 3T3-F442A cells, a cell line in which GH promotes differentiation and inhibits mitogen-stimulated growth; however, it is not known whether tyrosine phosphorylation plays a role in GH signal transduction. We report that GH treatment of 3T3-F442A cells resulted in the rapid tyrosine phosphorylation of at least four proteins. These included 42- (pp42) and 45-kDa (pp45) proteins immunologically related to ERK1 (extracellular signal-regulated kinase 1), a member of a family of serine/threonine protein kinases that are phosphorylated on tyrosine in response to mitogens. Prolonged phorbol ester pretreatment attenuated the tyrosine phosphorylation of pp42 and pp45 in platelet-derived growth factor-treated cells, but not in GH-treated cells. Maximal GH-stimulated tyrosine phosphorylation of pp42 and pp45 coincided with peak levels of a 42-kDa renaturable MBP kinase activity in lysates of GH-treated cells resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The observation that multiple cellular proteins are rapidly phosphorylated on tyrosine in response to physiological concentrations of GH suggests that tyrosine phosphorylation plays a role in GH signal transduction. Moreover, the stimulation of tyrosine phosphorylation of ERK-related proteins by GH suggests that mitogens and nonmitogens may employ common phosphotyrosyl proteins in the activation of ultimately distinct cellular programs.  相似文献   

19.
Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D''Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号