首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(l-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.  相似文献   

2.
Hydrolysis of polyesters by serine proteases   总被引:2,自引:0,他引:2  
The substrate specificity of -chymotrypsin and other serine proteases, trypsin, elastase, proteinase K and subtilisin, towards hydrolysis of various polyesters was examined using poly(L-lactide) (PLA), poly(-hydroxybutyrate) (PHB), poly(ethylene succinate) (PES), poly(ethylene adipate) (PEA), poly(butylene succinate) (PBS), poly(butylene succinate-co-adipate) (PBS/A), poly[oligo(tetramethylene succinate)-co-(tetramethylane carbonate)] (PBS/C), and poly(-caprolactone) (PCL). -Chymotrypsin could degrade PLA and PEA with a lower activity on PBS/A. Proteinase K and subtilisin degraded almost all substrates other than PHB. Trypsin and elastase had similar substrate specificities to -chymotrypsin.  相似文献   

3.
A new thermophilic microorganism capable of degrading poly(D-3-hydroxybutyrate) (PHB) was isolated from soil. A phylogenetic analysis based on 16S rDNA sequences indicated that the new isolate belongs to genus Streptomyces. PHB film and powder were completely degraded after 6 and 3 d cultivation, respectively at 50 degrees C. Scanning micrographs showed adherence of the microbial cells to the entire film surface, indicating that biodegradation occurs by colonization of the PHB surface. The film was degraded both by microbial attack and by the action of an extracellular enzyme secreted by the microorganism. The strain can also degrade poly(ethylene succinate), poly(ester carbonate), polycaprolactone and poly(butylene succinate), but to a lesser extent.  相似文献   

4.
The gene encoding a poly(DL-lactic acid) (PLA) depolymerase from Paenibacillus amylolyticus strain TB-13 was cloned and overexpressed in Escherichia coli. The purified recombinant PLA depolymerase, PlaA, exhibited degradation activities toward various biodegradable polyesters, such as poly(butylene succinate), poly(butylene succinate-co-adipate), poly(ethylene succinate), and poly(epsilon-caprolactone), as well as PLA. The monomeric lactic acid was detected as the degradation product of PLA. The substrate specificity toward triglycerides and p-nitrophenyl esters indicated that PlaA is a type of lipase. The gene encoded 201 amino acid residues, including the conserved pentapeptide Ala-His-Ser-Met-Gly, present in the lipases of mesophilic Bacillus species. The identity of the amino acid sequence of PlaA with Bacillus lipases was no more than 45 to 50%, and some of its properties were different from those of these lipases.  相似文献   

5.
本文回顾了我国在生物基材料包括聚羟基脂肪酸酯(PHA)、聚乳酸(PLA)、丁二酸丁二醇共聚物(PBS)及其单体丁二酸、二氧化碳共聚物(PPC)等产业化领域取得的进展。  相似文献   

6.
Hoshino A  Isono Y 《Biodegradation》2002,13(2):141-147
Commercial lipases were examined for their degradation efficiency of aliphatic polyester films. In 100 days immersion of polyester films in lipase solutions at37 °C at pH 7.0,Lipase Asahi derived from Chromobacterium viscosum degraded polybutylene succinate-co-adipate (PBSA), poly (-caprolactone) (PCL) and polybutylene succinate (PBS), and Lipase F derived from Rhizopus niveus degraded PBSA and PCL during 4–17 days. Lipase F-AP15 derived fromRhizopus orizae could degrade PBSA in 22 days. In these cases, PBS and PBSA were mainly degraded to dimers, whereas PCL was mainly degraded to monomers. Only poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHB/V) and poly (L-lactide) (PLA) were not degraded in the experiments. However, PLA degraded completely at 55 °C, pH 8.5 with Lipase PL during 20 days. This result could be explained with the sequential reactions of the chemical hydrolysis of the polymer to oligomers at higher pH and temperature, and the succeeding enzymatic hydrolysis of oligomers to the monomers.  相似文献   

7.
王慧  吴敬  陈晟  夏伟 《生物工程学报》2023,39(5):1987-1997
随着废弃塑料带来的环境污染越来越严重,生物可降解聚酯已成为大众关注的焦点。聚己二酸/对苯二甲酸丁二醇酯[poly(butylene adipate-co-terephthalate),PBAT]是脂肪族和芳香族共聚形成的生物可降解聚酯,兼具两者的优异性能。针对PBAT在自然条件下对降解环境要求严格且降解周期长的不足之处,本研究探究了角质酶在PBAT降解中的应用和对苯二甲酸-丁二醇酯(butylene terephthalate,BT)含量对PBAT生物降解性的影响,以实现对PBAT降解速率的提升。选取5种不同来源的聚酯降解酶对PBAT进行降解应用并比较出降解效果最优的酶,并测定了含有不同BT含量的PBAT聚酯的降解效率。结果表明,角质酶ICCG为降解效果最好的酶,且BT含量越高PBAT的降解率越低。此外,还确定了角质酶ICCG对高BT含量的PBAT(H)降解的最适温度、最适缓冲液类型、最适pH、最适E/S(enzyme to substrate)和最适底物浓度比分别为75℃、Tris-HCl、9.0、0.4%和1.0%。本研究结果可为角质酶在PBAT降解中的应用提供一定的理论依据和实验...  相似文献   

8.
Various thermophilic actinomycetes were screened for their ability to degrade a high melting point, aliphatic polyester, poly(tetramethylene succinate) (PTMS), at 50 °C. By using the clear zone method, Microbispora rosea, Excellospora japonica and E. viridilutea were found to have PTMS-degrading activity. In a liquid culture with 100 mg PTMS film, M. rosea subsp. aerata IFO 14046 degraded about 50 mg film sample after 8 days. Degradation at the amorphous regions of the PTMS film was observed by scanning electron microscopy. This strain was also able to completely degrade poly(-caprolactone).  相似文献   

9.
Pseudozyma antarctica JCM 10317 exhibits a strong degradation activity for biodegradable plastics (BPs) such as agricultural mulch films composed of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). An enzyme named PaE was isolated and the gene encoding PaE was cloned from the strain by functional complementation in Saccharomyces cerevisiae. The deduced amino acid sequence of PaE contains 198 amino acids with a predicted molecular weight of 20,362.41. High identity was observed between this sequence and that of cutinase-like enzymes (CLEs) (61–68 %); therefore, the gene encoding PaE was named PaCLE1. The specific activity of PaE against emulsified PBSA was 54.8?±?6.3 U/mg. In addition to emulsified BPs, PaE degraded solid films of PBS, PBSA, poly(ε-caprolactone), and poly(lactic acid).  相似文献   

10.
Loo CY  Lee WH  Tsuge T  Doi Y  Sudesh K 《Biotechnology letters》2005,27(18):1405-1410
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (Mn) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6–3.9.  相似文献   

11.
Poly(d -lactate-co-glycolate-co-4-hydroxybutyrate) [poly(d -LA-co-GA-co-4HB)] and poly(d -lactate-co-glycolate-co-4-hydroxybutyrate-co-d -2-hydroxybutyrate) [poly(d -LA-co-GA-co-4HB-co-d -2HB)] are of interest for their potential applications as new biomedical polymers. Here we report their enhanced production by metabolically engineered Escherichia coli. To examine the polymer properties, poly(d -LA-co-GA-co-4HB) polymers having various monomer compositions (3.4–41.0mol% of 4HB) were produced by culturing the engineered E. coli strain expressing xylBC from Caulobacter crescentus, evolved phaC1 from Pseudomonas sp. MBEL 6-19 (phaC1437), and evolved pct from Clostridium propionicum (pct540) in a medium supplemented with sodium 4HB at various concentrations. To produce these polymers without 4HB feeding, the 4HB biosynthetic pathway was additionally constructed by expressing Clostridium kluyveri sucD and 4hbD. The engineered E. coli expressing xylBC, phaC1437, pct540, sucD, and 4hbD successfully produced poly(d -LA-co-GA-co-4HB-co-d -2HB) and poly(d -LA-co-GA-co-4HB) from glucose and xylose. Through modulating the expression levels of the heterologous genes and performing fed-batch cultures, the polymer content and titer could be increased to 65.76wt% and 6.19g/L, respectively, while the monomer fractions in the polymers could be altered as desired. The polymers produced, in particular, the 4HB-rich polymers showed viscous and sticky properties suggesting that they might be used as medical adhesives.  相似文献   

12.
A locally isolated Gram negative bacterium, Cupriavidus sp. USMAA9-39 was able to produce various types of biodegradable polyesters through a two-step cultivation process. These are copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)]. These polymers were synthesized by this bacterium when grown with a combination of some carbon sources. The biosynthesis of P(3HB-co-4HB) was achieved by using carbon sources such as γ-butyrolactone or 1,4-butanediol or by a combination of oleic acid with either γ-butyrolactone or 1,4-butanediol. Meanwhile, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced using 1-pentanol or valeric acid or by a combination of oleic acid with either 1-pentanol or valeric acid. When γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol were used as mixed carbon sources, P(3HB-co-3HV-co-4HB) terpolymer were produced. The presence of 3HB, 3HV or/and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

13.
Hoang KC  Tseng M  Shu WJ 《Biodegradation》2007,18(3):333-342
Thermophilic actinomycetes were isolated from sediment of the Chingshuei hot spring in north Taiwan, and the strain HS 45-1 was selected from colonies which formed distinct clear zones on agar plate with emulsified polyethylene succinate (PES). The film of PES disappeared within 6 days in liquid cultures at 50°C. The strain HS 45-1 was also able to degrade poly (ε-carpolactone) (PCL) and poly (3-hydroxybutyrate) (PHB) films completely within 6 days in liquid cultures. Basing on the results of phynotypic characteristics, phylogenetic studies and DNA-DNA hybridization, strain HS 45-1 should be assigned to Micorbispora rosea subsp. taiwanensis.  相似文献   

14.
A precursor feeding strategy for effective biopolymer producer strain Azotobacter chroococcum 7B was used to synthesize various poly(3-hydroxybutyrate) (PHB) copolymers. We performed experiments on biosynthesis of PHB copolymers by A. chroococcum 7B using various precursors: sucrose as the primary carbon source, various carboxylic acids and ethylene glycol (EG) derivatives [diethylene glycol (DEG), triethylene glycol (TEG), poly(ethylene glycol) (PEG) 300, PEG 400, PEG 1000] as additional carbon sources. We analyzed strain growth parameters including biomass and polymer yields as well as molecular weight and monomer composition of produced copolymers. We demonstrated that A. chroococcum 7B was able to synthesize copolymers using carboxylic acids with the length less than linear 6C, including poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB-4MHV) using Y-shaped 6C 3-methylvaleric acid as precursor as well as EG-containing copolymers: PHB–DEG, PHB–TEG, PHB–PEG, and PHB–HV–PEG copolymers using short-chain PEGs (with n?≤?9) as precursors. It was shown that use of the additional carbon sources caused inhibition of cell growth, decrease in polymer yields, fall in polymer molecular weight, decrease in 3-hydroxyvalerate content in produced PHB–HV–PEG copolymer, and change in bacterial cells morphology that were depended on the nature of the precursors (carboxylic acids or EG derivatives) and the timing of its addition to the growth medium.  相似文献   

15.
Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca2+ or Mg2+ at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid).  相似文献   

16.
A purified lipase from the yeast Cryptococcus sp. strain S-2 exhibited remote homology to proteins belonging to the cutinase family rather than to lipases. This enzyme could effectively degrade the high-molecular-weight compound polylactic acid, as well as other biodegradable plastics, including polybutylene succinate, poly (epsilon-caprolactone), and poly(3-hydroxybutyrate).  相似文献   

17.
A purified lipase from the yeast Cryptococcus sp. strain S-2 exhibited remote homology to proteins belonging to the cutinase family rather than to lipases. This enzyme could effectively degrade the high-molecular-weight compound polylactic acid, as well as other biodegradable plastics, including polybutylene succinate, poly (-caprolactone), and poly(3-hydroxybutyrate).  相似文献   

18.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters, with 3-hydroxyvalerate (3HV) contents ranging from 17 to 60 mol%, were produced byAlcaligenes sp. MT-16, and their biocompatibility evaluated by the growth of Chinese hamster ovary (CHO) cells and the adsorption of blood proteins and platelets onto their film surfaces. The number of CHO cells that adhered to and grew on these films was higher with increasing 3HV content. In contrast, the tendency for blood proteins and platelets to adhere to the copolyester surfaces significantly decreased with increasing 3HV content. Examination of the surface morphology using atomic force microscopy revealed that the surface roughness was an important factor in determining the biocompatibility of theses copolyesters. The results obtained in this study suggest that poly(3HB-co-3HV) copolyesters, with >30 mol% 3HV, may be useful in biocompatible biomedical applications.  相似文献   

19.
A threonine overproducing mutant of Alcaligenes sp. SH-69 was isolated and its ability to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), was investigated. The 3HV fraction in poly(3HB-co-3HV) produced from glucose as the sole carbon source exceeded 22 mol%, which is approximately six times higher than that achieved by the wild type under the same culture conditions. Furthermore, the addition of a relatively low concentration (10 mM) of propionic acid, valeric acid or levulinic acid to the glucose medium greatly increased the molar fraction of 3HV in the copolyester, to 38–77 mol%. The results suggest that metabolic engineering of the biosynthetic pathways supplying polyhydroxyalkanoate monomers, such as the threonine biosynthetic pathway, can lead to new poly(3HB-co-3HV)-producing strains.  相似文献   

20.
The enzymatic degradation and repolymerization were carried out with the objectives of developing the chemical recycling of aliphatic polyester-type plastics, such as the poly(butylene adipate) (PBA), poly(butylene succinate), and poly(butylene adipate-co-succinate) copolymers which are typical biodegradable plastics. They were degraded by lipase in an organic solvent solution containing a small amount of water to produce cyclic oligomers mainly consisting of the cyclic diester. The produced cyclic oligomer was readily repolymerized by lipase to produce a polyester having an equal or higher molecular weight compared to the parent polymer. As an example, PBA having an Mw of 22,000 was almost quantitatively transformed by lipase CA (Novozym 435) in water-containing toluene at 50 degrees C into the corresponding cyclic oligomers mainly consisting of dimers. Thus, the obtained oligomers were readily polymerized by lipase CA to produce the PBA with an Mw of 52,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号