首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
人妊娠期间,胎盘合成大量的类固醇激素,与妊娠的启动、维持、分娩以及胎儿的发育均存在密切的关系。阐明胎盘类固醇激素特别是孕酮合成与分泌的调节机制对于寻找理想的生育调控技术和生殖保健方法具有重要的意义。因此,胎盘类固醇激素合成与分泌的调节向来是生殖生物学与妇产科学领域所关注的焦点问题之一,  相似文献   

3.
人妊娠期间,胎盘合成大量的类固醇激素,与妊娠的启动、维持、分娩以及胎儿的发育均存在密切的关系。阐明胎盘类固醇激素特别是孕酮合成与分泌的调节机制对于寻找理想的生育调控技术和生殖保健方法具有重要的意义。因此,胎盘类固醇激素合成与分泌的调节向来是生殖生物学与妇产科学领域所关注的焦点问题之一,并为此开展了大量的研究,但迄今仍不清楚,其主要原因之一是  相似文献   

4.
The mitochondrial side-chain cleavage of cholesterol, catalysed by cytochrome P450scc, is rate-limiting in the synthesis of progesterone by the human placenta. Cytochrome P450scc activity is in turn limited by the concentration of adrenodoxin reductase (AR) in placental mitochondria. In order to better understand which components of the cholesterol side-chain cleavage system are important in the regulation of placental progesterone synthesis, we have examined their effects on P450scc activity with both saturating and limiting concentrations of AR. The present study reveals that decreasing the AR concentration causes a decrease in the K(m) of cytochrome P450scc for cholesterol, facilitating saturation of the enzyme with its substrate. Decreasing AR resulted in P450scc activity becoming less sensitive to changes in P450scc concentration. The adrenodoxin (Adx) concentration in mitochondria from term placentae is near-saturating for P450scc and under these conditions, we found that decreasing AR reduces the K(m) of P450scc for adrenodoxin. Increasing either the cholesterol or P450scc concentration increased the amount of AR required for P450scc to work at half its maximum velocity. A relatively small increase in AR can support considerably higher rates of side-chain cleavage activity when there is a coordinate increase in AR and P450scc concentrations. We conclude from this study that cholesterol is near-saturating for cytochrome P450scc activity in placental mitochondria due to the P450scc displaying a low K(m) for cholesterol resulting from the low and rate-limiting concentration of AR present. This study reveals that it is unlikely that cholesterol or adrenodoxin concentrations are important regulators of placental progesterone synthesis but AR or coordinate changes in AR and P450scc concentrations are likely to be important in its regulation.  相似文献   

5.
6.
We obtained uterine and peripheral venous plasma, and samples of luteal and placental tissues from 2- to 7-year-old, Eurasian mountain reindeer (Rangifer tarandus tarandus) from a free-living, semi-domesticated herd in northern Norway in November 1995, and February and March 1996. In November, ovarian venous blood was also collected from four animals. Plasma samples were assayed for progesterone and oestradiol. The tissue samples were examined by light and electron microscopy, steroid dehydrogenase histochemistry, and northern blot analysis for RNAs for 3beta-hydroxy-steroid dehydrogenase (3beta-HSD) and P450 (side chain cleavage (scc)). Peripheral blood was taken from non-pregnant females in the same herd on the same dates. Peripheral progesterone concentrations in pregnant reindeer (3.4 +/- 0.5 ng/ml, n = 8) clearly exceeded those in non-pregnant animals (0.40 +/- 0.14 ng/ml; P < 0.0004 , n = 10) but oestradiol levels were only marginally higher in pregnant (6.0 +/- 0.7 pg/ml) than in non-pregnant (4.8 +/- 0.5 pg/ml; P = 0.35) reindeer at the stages examined. In pregnant animals, peripheral progesterone and oestradiol concentrations rose slightly between November and March but the differences did not reach significance (progesterone, P = 0.083; oestradiol, P = 0.061). In November, progesterone concentrations in the ovarian vein (79 +/- 15 ng/ml) greatly exceeded (P < 0.03) those in the uterine vein ( 10 +/- 4 ng/ml) which in turn exceeded the levels in the peripheral blood (2.8 +/- 0.4 ng/ml; P < 0.29). Oestradiol concentrations were slightly but significantly (P < 0.05) higher in the ovarian (20 +/- 3 pg/ml) than the uterine vein (13 +/- 1 pg/ml) and, in turn, greater (P < 0.03) than in peripheral blood (4.6 +/- 0.4 pg/ml). All samples of luteal tissue consisted exclusively of normal fully-differentiated cells and stained intensely for 3beta-HSD. Isolated groups of placental cells also stained strongly for 3beta-HSD. RNA for P450 (scc) and 3beta-HSD was abundant in all corpora lutea and lower concentrations of P450 (scc) were present in the placenta. 3beta-HSD RNA in the placenta was below the limit of detection. We conclude that the corpus luteum remains an important source of progesterone throughout pregnancy in reindeer but that the placenta is also steroidogenic.  相似文献   

7.
We have previously reported that cytochrome P450scc activity in the human placenta is limited by the supply of electrons to the P450scc [Tuckey, R. C., Woods, S. T. & Tajbakhsh, M. (1997) Eur. J. Biochem. 244, 835-839]. The aim of the present study was to determine whether it is adrenodoxin reductase, adrenodoxin or both which limits cytochrome P450scc activity and hence progesterone synthesis in the placenta. We found that the concentrations of adrenodoxin reductase and adrenodoxin in placental mitochondria were both considerably lower than the concentrations of these proteins in the bovine adrenal cortex. When P450scc activity assays were carried out at high mitochondrial protein concentrations, we found that the addition of exogenous adrenodoxin reductase to sonicated mitochondria rescued pregnenolone synthesis to a level above that for intact mitochondria, showing that adrenodoxin is near-saturating in vivo. In contrast, pregnenolone synthesis by sonicated mitochondria was almost zero even after the addition of human adrenodoxin. This shows that the concentration of endogenous adrenodoxin reductase was insufficient to support appreciable rates of pregnenolone synthesis, even when concentrated mitochondrial samples were used. Comparative studies with human and bovine adrenodoxin reductase have revealed that a twofold higher concentration of human adrenodoxin reductase is required for maximal P450scc activity in the presence of saturating human adrenodoxin. Thus, not only is the adrenodoxin concentration low in placental mitochondria, but the amount required for maximal P450scc activity is higher than that for the bovine reductase. Overall, the data indicate that the adrenodoxin reductase concentration limits the activity of P450scc in placental mitochondria and hence determines the rate of progesterone synthesis.  相似文献   

8.
The conversion of cholesterol to pregnenolone by cytochrome P450scc is the rate-determining step in placental progesterone synthesis. The limiting component for placental cytochrome P450scc activity is the concentration of adrenodoxin reductase in the mitochondria, where it permits cytochrome P450scc to work at only 16% of maximum velocity. Adrenodoxin reductase serves to reduce adrenodoxin as part of the electron transfer from NADPH to cytochrome P450scc. We therefore measured the proportion of adrenodoxin in the reduced form in intact mitochondria from the human placenta during active pregnenolone synthesis, using EPR. We found that the adrenodoxin pool was only 30% reduced, indicating that the adrenodoxin reductase concentration was insufficient to maintain the adrenodoxin in the fully reduced state. As both oxidized and reduced adrenodoxin can bind to cytochrome P450scc we tested the ability of oxidized adrenodoxin to act as a competitive inhibitor of pregnenolone synthesis. This was done in a fully reconstituted system comprising 0.3% Tween 20 and purified proteins, and in a partially reconstituted system comprising submitochondrial particles, purified adrenodoxin and adrenodoxin reductase. We found that oxidized adrenodoxin is an effective competitive inhibitor of placental cytochrome P450scc with a Ki value half that of the Km for reduced adrenodoxin. We conclude that the limiting concentration of adrenodoxin reductase present in placental mitochondria has a two-fold effect on cytochrome P450scc activity. It limits the amount of reduced adrenodoxin that is available to donate electrons to cytochrome P450scc and the oxidized adrenodoxin that remains, competitively inhibits the cytochrome.  相似文献   

9.
The actions of insulin and somatomedin C (insulin-like growth factor I) on cholesterol side-chain cleavage activity and the synthesis of cytochrome P-450scc and adrenodoxin were investigated in primary cultures of swine ovarian (granulosa) cells. Nanomolar concentrations of pure human somatomedin C stimulated biosynthesis of progesterone and 20 alpha-hydroxypregn-4-en-3-one. Moreover, in the presence of exogenous sterol substrate for cholesterol side-chain cleavage, somatomedin C significantly enhanced pregnenolone biosynthesis in a time- and dose-dependent manner. This augmentation of functional cholesterol side-chain cleavage activity was accompanied by a dose-dependent (2-16-fold) increase in [35S]methionine incorporation into specific immunoprecipitable cytochrome P-450scc and adrenodoxin. Micromolar concentrations of insulin (but not proinsulin or desoctapeptide) also induced synthesis of cholesterol side-chain cleavage constituents by 4-7-fold. These results demonstrate that an insulin-like growth factor, somatomedin C, exerts discrete differentiating effects on ovarian cells characterized by increased synthesis of immunospecific cytochrome P-450scc and adrenodoxin. Thus, we infer that somatomedin C may serve a critical role in the differentiation of steroidogenic cells in the mammalian ovary.  相似文献   

10.
The placenta sustains the developing fetus throughout gestation and its major functions include nutrition, gas and waste exchange via a variety of passive or active mechanisms. Up to 30 g of calcium (Ca(2+)) actively crosses the trophoblast layer during human pregnancy. The Ca(2+) ion not only plays an important role for skeletal development but is also an essential second messenger. This review is intended to highlight the implications of Ca(2+) signaling during reproduction and specifically placentation. Initially, a Ca(2+) wave induces fertilization of the oocyte. The intracellular Ca(2+) concentration is key for the blastocyst implantation, proper placental development and function. Current knowledge of many proteins involved in placental Ca(2+) regulation and their function in pathologic conditions is largely limited. Recent studies, however, point to alterations in Ca(2+) homeostasis in placental pathologies such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR). A broader understanding of the role of Ca(2+) signaling during human reproduction may offer insight into impaired pregnancy outcomes.  相似文献   

11.
The regulation by cAMP of cholesterol side-chain cleavage activity and the synthesis of immunoisolated cytochrome P-450scc and adrenodoxin proteins was investigated in primary cultures of swine ovarian (granulosa) cells. Administration of a novel adenylate cyclase toxin isolated from Bordetella pertussis increased granulosa-cell cAMP accumulation up to 200-fold over basal. These effects were additive with those of FSH, forskolin, and cholera toxin. In contrast, bacterial extracts BP 347 and BP 348 from mutant strains of B. pertussis that lack either all virulent factors or the adenylate cyclase toxin and hemolysin were devoid of effect. Granulosa-cell cAMP accumulation supported by active bacterial adenylate cyclase was accompanied by 2- to 11-fold, time-dependent increases in [35S]methionine incorporation into immunospecific cytochrome P-450scc and adrenodoxin. These increases in the synthesis of cholesterol side-chain cleavage proteins were associated with enhanced pregnenolone production in response to exogenous sterol substrate, 25-hydroxycholesterol, and augmented progesterone secretion both in the absence and presence of exogenous lipoprotein. Moreover, the effects of Bordetella adenylate cyclase toxin on granulosa cell steroidogenesis were functionally integrated with other regulatory responses, since the non-cAMP dependent effector, estradiol 17-beta, interacted synergistically with bacterial adenylate cyclase in stimulating progesterone production. We conclude that exogenous adenylate cyclase isolated from B. pertussis can be functionally integrated into the cAMP-dependent effector pathway of granulosa cells with a resulting increase in intracellular cAMP concentrations, augmented biosynthesis of progesterone and pregnenolone, enhanced synthesis of immunospecific cytochrome P-450scc and adrenodoxin, and synergistic interactions with a non-cAMP-dependent ovarian effector hormone (estradiol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
Vasoactive intestinal peptide (VIP), a neuropeptide present in ovarian nerves, has been previously shown to induce synthesis of the side-chain cleavage cytochrome P-450 enzyme which catalyzes the conversion of cholesterol to pregnenolone (the rate-limiting step in progesterone synthesis). In the present study we demonstrate, by means of a bovine 3'-specific P-450scc cDNA probe, that this VIP effect is exerted at least partially at the level of gene expression in cultured granulosa cells that were isolated from estrogen-primed, immature rats. The size and level of the 2.0 kilobase P-450scc mRNA species was assessed by Northern blot analysis, while the translatability of this mRNA was assayed by immunoisolation of the 35S-labeled P-450scc precursor protein translated from total RNA of control and stimulated granulosa cells. FSH was much more effective than VIP at increasing P-450scc mRNA concentrations in cultured granulosa cells, whereas secretin treatment was ineffective. The results suggest that, like FSH, the stimulatory effect of the neuropeptide VIP on ovarian progesterone secretion involves regulation of P-450scc gene expression during functional maturation of the prepubertal ovary.  相似文献   

15.
16.
17.
We report the isolating and sequencing of three cDNA clones encoding rat P-450scc, the nucleotide and protein sequences of which are highly homologous to those of bovine and human P-450scc, especially in the putative heme and steroid binding domains. We document that different molecular mechanisms regulate P-450scc in granulosa cells of preovulatory (PO) follicles prior to and after luteinization. Luteinizing hormone/human chorionic gonadotropin (LH/hCG) and cAMP are obligatory to induce P-450scc mRNA in PO granulosa cells in vivo and in vitro. Once P-450scc mRNA is induced as a consequence of the LH/hCG surge it is constitutively maintained by luteinized cells in vivo (0-4 days) and in vitro (0-9 days) in the absence of gonadotropins, is susceptible to modulation by prolactin and is no longer regulated by cAMP. Exposure to elevated concentrations of hCG in vivo for 5-7 h was required for PO granulosa cells to undergo a functional transition establishing the stable luteal cell phenotype. Transient exposure of PO + hCG (7 h) follicles in vitro to the RNA synthesis inhibitor actinomycin D (1 microgram/ml) or the protein synthesis inhibitor cycloheximide (10 micrograms/ml), for 1-5 h prior to culturing the granulosa cells failed to disrupt the induction of P-450scc mRNA, progesterone biosynthesis, and appearance of the luteal cell morphology. Inhibitors of protein kinase A (Rp-cAMPS; 1-500 microM and N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8); 1-200 microM) added directly to the luteinized cell cultures also failed to alter P-450scc mRNA in these cells, although the cells contain in vivo amounts of mRNA for RII beta, RI alpha, and C alpha, the primary subunits of protein kinase A found in the rat ovary. These data suggest that expression of the P-450scc gene in rat ovarian follicular cells is regulated in a sequential manner by cAMP-dependent and cAMP-independent mechanisms associated with granulosa cells and luteal cells, respectively.  相似文献   

18.
An immunochemical comparison of components of cholesterol side chain cleavage system from bovine adrenocortical and human placental mitochondria has been carried out. Antibodies against cytochrome P-450scc, adrenodoxin reductase and adrenodoxin from bovine adrenocortical mitochondria were shown to cross-react with corresponding antigens of human placental mitochondria. A highly sensitive immunochemical method for cytochrome P-450scc determination has been developed. Limited proteolysis of cytochrome P-450scc of human placental mitochondria was studied, and the products of trypsinolysis were identified using antibodies against cytochrome P-450scc and fragments of its polypeptide chain: F1, F2 and F3. Immunochemical relatedness of ferredoxins from bovine adrenocortical and human placental mitochondria allowed one to develop a fast and efficient method for cytochrome P-450scc purification from human placental mitochondria by affinity chromatography on adrenodoxin-Sepharose.  相似文献   

19.
The discovery that 7-dehydrocholesterol (7DHC) is an excellent substrate for cytochrome P450scc (CYP11A1) opens up new possibilities in biochemistry. To elucidate its biological significance we tested ex vivo P450scc-dependent metabolism of 7DHC by tissues expressing high and low levels of P450scc activity, placenta and epidermal keratinocytes, respectively. Incubation of human placenta fragments with 7DHC led to its conversion to 7-dehydropregnenolone (7DHP), which was inhibited by dl-aminoglutethimide, and stimulated by forskolin. Final proof for P450scc involvement was provided in isolated placental mitochondria where production of 7DHP was almost completely inhibited by 22R-hydroxycholesterol. 7DHC was metabolized by placental mitochondria at a faster rate than exogenous cholesterol, under both limiting and saturating conditions of substrate transport, consistent with higher catalytic efficiency (k(cat)/K(m)) with 7DHC as substrate than with cholesterol. Ex vivo experiments showed five 5,7-dienal intermediates with MS spectra of dihydroxy and mono-hydroxy-7DHC and retention time corresponding to 20,22(OH)(2)7DHC and 22(OH)7DHC. The chemical structure of 20,22(OH)(2)7DHC was defined by NMR. 7DHP was further metabolized by either placental fragments or placental microsomes to 7-dehydroprogesterone as defined by UV, MS and NMR, and to an additional product with a 5,7-dienal structure and MS corresponding to hydroxy-7DHP. Furthermore, epidermal keratinocytes transformed either exogenous or endogenous 7DHC to 7DHP. 7DHP inhibited keratinocytes proliferation, while the product of its pholytic transformation, pregcalciferol, lost this capability. In conclusion, tissues expressing P450scc can metabolize 7DHC to biologically active 7DHP with 22(OH)7DHC and 20,22(OH)(2)7DHC serving as intermediates, and with further metabolism to 7-dehydroprogesterone and (OH)7DHP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号