首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lim1 is a homeobox gene expressed in the extraembryonic anterior visceral endoderm and in primitive streak-derived tissues of early mouse embryos. Mice homozygous for a targeted mutation of Lim1 lack head structures anterior to rhombomere 3 in the hindbrain. To determine in which tissues Lim1 is required for head formation and its mode of action, we have generated chimeric mouse embryos and performed tissue layer recombination explant assays. In chimeric embryos in which the visceral endoderm was composed of predominantly wild-type cells, we found that Lim1(-)(/)(-) cells were able to contribute to the anterior mesendoderm of embryonic day 7.5 chimeric embryos but that embryonic day 9.5 chimeric embryos displayed a range of head defects. In addition, early somite stage chimeras generated by injecting Lim1(-)(/)(-) embryonic stem cells into wild-type tetraploid blastocysts lacked forebrain and midbrain neural tissue. Furthermore, in explant recombination assays, anterior mesendoderm from Lim1(-)(/)(-) embryos was unable to maintain the expression of the anterior neural marker gene Otx2 in wild-type ectoderm. In complementary experiments, embryonic day 9.5 chimeric embryos in which the visceral endoderm was composed of predominantly Lim1(-)(/)(-) cells and the embryo proper of largely wild-type cells, also phenocopied the Lim1(-)(/)(-) headless phenotype. These results indicate that Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation and that its inactivation in these tissues produces cell non-autonomous defects. We discuss a double assurance model in which Lim1 regulates sequential signaling events required for head formation in the mouse.  相似文献   

2.
The nephric duct plays a central role in orchestrating the development of the mammalian urogenital system. Lim 1 is a homeobox gene required for head and urogenital development in the mouse but most Lim 1-deficient embryos die by embryonic day 10. To determine the role of Lim 1 in the development of the nephric duct, we conditionally removed Lim 1 in the nephric epithelium just after the nephric duct begins to form using a floxed allele of Lim 1 and Pax2-cre transgenic mice. We report that Lim 1 conditional knockout mice have renal hypoplasia and hydronephrosis. Developmental studies revealed that the caudal portion of the nephric duct did not reach the urogenital sinus at embryonic day 10.5, formation of the ureteric bud was delayed, the ureteric bud was smaller and branching of the ureteric bud reduced. We also found that the nephric duct was generally not maintained and extension of the Müllerian duct inhibited. Molecular analysis indicated that Pax2 was expressed normally but the expression of Wnt9b and E-cadherin in the nephric duct was markedly altered. These results suggest that Lim 1 influences nephric duct extension and ureteric bud outgrowth by regulating and or maintaining the differentiation of the nephric epithelium.  相似文献   

3.
4.
Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects.  相似文献   

5.
The T-locus on mouse chromosome 17 contains a number of mutations that disrupt cellular differentiation and embryonic development. Because of their purported role in neuronal differentiation and brain development, gangliosides were studied in mouse embryos homozygous for two T-locus mutations: T and twl. Mice homozygous for the dominant T mutation die from failed mesodermal differentiation in the notochord, whereas mice homozygous for the recessive twl mutation die from failed neural differentiation in the ventral portion of the neural tube. No major ganglioside abnormalities were found in T/T mutant embryos at Embryonic Day 10 (E-10). In contrast, E-11 twl/twl mutants expressed a marked deficiency of the tetrasialoganglioside GQ1. Since this ganglioside migrates with GQ1b in three different thin-layer solvent systems, it may have the same structure as GQ1b. To gain insight into regional distribution, gangliosides were examined in head regions and body regions of normal (+/+) E-11 embryos. The ganglioside composition of these regions was the same as that of the whole embryo, with GM3 and GD3 comprising about 75% of the total ganglioside distribution. Moreover, N-acetylneuraminic acid was the only sialic acid species detectable in the E-10 and the E-11 embryos. These findings indicate that N-acetylneuraminic acid-containing gangliosides are synthesized actively in E-10 and E-11 mouse embryos and also suggest that the GQ1 deficiency in the twl/twl mutants is closely associated with failed neural differentiation.  相似文献   

6.
The Xenopus cerberus gene encodes a secreted factor expressed in the Spemann organizer that can cause ectopic head formation when its mRNA is injected into Xenopus embryos. In mouse, the cerberus-related gene, Cerr1, is expressed in the anterior mesendoderm that underlies the presumptive anterior neural plate and its expression is downregulated in Lim1 headless embryos. To determine whether Cerr1 is required for head formation we generated a null mutation in Cerr1 by gene targeting in mouse embryonic stem cells. We found that head formation is normal in Cerr1(-/-) embryos and we detected no obvious phenotypic defects in adult Cerr1(-/-) mice. However, in embryonic tissue layer recombination assays, Cerr1(-/-) presomitic/somitic mesoderm, unlike Cerr1-expressing wild-type presomitic/somitic mesoderm, was unable to maintain expression of the anterior neural marker gene Otx2 in ectoderm explants. These findings suggest that establishment of anterior identity in the mouse may involve the action of multiple functionally redundant factors.  相似文献   

7.
Summary A new homoeotic mutant, I127, showing abnormal growths in the head region including homoeotic transformation of eye to genitalia and antenna to leg, was isolated in a screen designed to find new alleles of the tumorous head (tuh-3), mutation. Similarities in the phenotype and genetics of the mutant, and complementation studies with tuh-1; tuh-3, suggest that I127 is indeed an allele of tuh-3. In combination with the first chromosome modifier tuh-1, the mutant is temperature-sensitive during the third larval instar, giving an increased penetrance of the tumorous head phenotype when reared at 25° C as opposed to 18° C. The isolation of further alleles at the tumorous-head locus are essential. The types of morphological defects which can result from mutations at this locus would enable us to establish if this is a complex locus, and if null mutations are lethal during development. The interactions of the tumorous-head gene with first chromosome modifiers and other homoeotic mutations will only be understood if we able to induce a number of mutations at this locus, and as a consequence begin to elucidate the role of the wild-type gene product in normal development.  相似文献   

8.
9.
The teashirt gene encodes a protein with three widely spaced zinc finger motifs that is crucial for specifying trunk identity in Drosophila embryos. Here, we describe a gene called tiptop, which encodes a protein highly similar to Teashirt. We have analyzed the expression patterns and functions of these two genes in the trunk of the embryo. Initially, teashirt and tiptop expressions are detected in distinct domains; teashirt in the trunk and tiptop in parts of the head and tail. In different mutant situations, we show that, in the trunk and head, they repress each other's expression. Unlike teashirt, we found that deletion of tiptop is homozygous viable and fertile. However, embryos lacking both gene activities display a more severe trunk phenotype than teashirt mutant embryos alone. Ectopic expression of either gene produces an almost identical phenotype, indicating that Teashirt and Tiptop have, on the whole, common activities. We conclude that Teashirt and Tiptop repress each other's expression and that Teashirt has a crucial role for trunk patterning that is in part masked by ectopic expression of Tiptop.  相似文献   

10.
The orientation of the anterior-posterior (A-P) axis was examined in gastrula-stage Hnf3beta, Otx2 and Lim1 null mutant embryos that display defective axis development. In situ hybridization analysis of the expression pattern of genes associated with the posterior germ layer tissues and the primitive streak (T, Wnt3 and Fgf8) and anterior endoderm (Cer1 and Sox17) revealed that the A-P axis of mutant embryos remains aligned with the proximo-distal plane of the gastrula. Further analysis revealed that cells which express Chrd activity are either absent in Hnf3beta mutant embryos or localised in heterotopic sites in Lim1 and Otx2 null mutants. Lim1-expressing cells are present in the Hnf3beta mutant embryo albeit in heterotopic sites. In all three mutants, Gsc-expressing cells are missing from the anterior mesendoderm. These findings suggest that although some cells with organizer activity may be present in the mutant embryo, they are not properly localised and fail to contribute to the axial mesoderm of the head. By contrast, in T/T mutant embryos that display normal head fold development, the expression domains of organizer, primitive streak and anterior endoderm genes are regionalised correctly in the gastrula.  相似文献   

11.
12.
13.
14.
15.
Deng CX 《Mutation research》2001,477(1-2):183-189
Germline mutations in Brca1 are responsible for most cases of familial breast and ovarian cancers, but somatic mutations in the gene are rarely detected in sporadic tumors. Moreover, mouse embryos carrying Brca1-null mutations or homozygous deletions of Brca1 exon 11 of (Brca1Delta11/Delta11) die during gestation due to proliferation defects, raising questions about the mechanisms by which Brca1 represses tumor formation. Molecular analysis reveals that these Brca1 mutations cause hypersensitivity to gamma-irradiation and chromosomal abnormalities in embryos and embryonic fibroblast cells (MEFs). Notably, Brca1Delta11/Delta11 MEFs maintain an intact G1-S checkpoint, but are defective in G2-M checkpoint control. They also contain multiple, functional centrosomes, which lead to unequal chromosome segregation and aneuploidy. These data uncover an essential role for Brca1 in maintaining genetic stability through regulation of centrosome duplication and G2-M checkpoint, and provide a molecular basis for its role in tumorigenesis. Finally, we show that conditional mutation of Brca1 in mammary epithelium causes increased apoptosis and abnormal ductal development. Mammary tumor formation in mutant mice occurs after long latency and is associated with p53 mutations. These results are consistent with a model that Brca1 acts as a caretaker gene, whose absence does not directly initiate tumorigenesis, instead, causes genetic instability, which triggers further alterations and ultimately leads to tumor formation.  相似文献   

16.
Genetic and developmental analysis of an X-linked vital locus vnd was undertaken. Embryos hemizygous for the original allele vnd did not hatch and exhibited a disorganized ventral nervous system (VNS). The mutation maps in the region 1B6-7 to 1B9-10, a subregion of an area previously shown to be essential to normal neural development. In this paper, we report isolation of five new alleles at the locus vnd. Genetic complementation analysis of all mutations at the vnd locus, with lethal alleles at adjacent loci, indicates that all lesions at the locus vnd affect only one vital gene function in the region. Four of the five alleles are embryonic lethal; one allele is subvital and behaves like an hypomorphic mutation. Hemizygous embryos for three of the four embryonic lethal alleles were inspected in histological sections; all exhibited disorganized VNS similar to the original allele. The developmental analysis in gynandromorphic genetic mosaics shows that (1) vnd+ gene function is not essential in most imaginal-disc cell derivatives, (2) only about 30% of the mosaic zygotes survive as adults, (3) mosaic zygotes with mutant tissue close to the head cuticle are least likely to survive, and (4) mutant tissue in the thoracic ganglion in the adult is not necessarily lethal. The mosaic data are consistent with the vnd+ gene function being necessary in neural cells derived from the anterioventral region of the blastoderm.  相似文献   

17.
Accurate animal models that recapitulate the phenotype and genotype of patients with beta-thalassemia would enable the development of a range of possible therapeutic approaches. Here we report the generation of a mouse model carrying the codons 41-42 (-TTCT) beta-thalassemia mutation in the intact human beta-globin locus. This mutation accounts for approximately 40% of beta-thalassemia mutations in southern China and Thailand. We demonstrate a low level of production of gamma-globins from the mutant locus in day 18 embryos, as well as production of mutant human beta-globin mRNA. However, in contrast to transgenic mice carrying the normal human beta-globin locus, 4-bp deletion mice fail to show any phenotypic complementation of the knockout mutation of both murine beta-globin genes. Our studies suggest that this is a valuable model for gene correction in hemopoietic stem cells and for studying the effects of HbF inducers in vivo in a "humanized" thalassemic environment.  相似文献   

18.
Shimada A  Shima A 《Mutation research》2004,552(1-2):119-124
We previously established a somatic mutation assay of the medaka wl (white leucophores) locus based on visual inspection, and showed that somatic mutations at paternally derived alleles frequently arise during the development of F1 embryos fertilized by sperm/late spermatids that had been exposed to gamma-rays. To further study such delayed mutations, we determined the frequency of mutant embryos obtained from three different crosses between irradiated males and non-irradiated females. When sperm and late spermatids were irradiated, the mutant frequency within non-irradiated maternally derived alleles was approximately 3 times higher than in the control group. In the F2 generation, however, no increase in mutant frequency was observed. Similarly, there was no significant increase in the F1 mutant frequency when stem spermatogonia were irradiated. These data suggest that irradiation of sperm and late spermatids can induce indirect mutations in F1 somatic cells, supporting the idea that genomic instability arises during F1 embryonic development. Moreover, such instability apparently arises most frequently when eggs are fertilized just after the sperm are irradiated.  相似文献   

19.
M. K. Abbott  J. A. Lengyel 《Genetics》1991,129(3):783-789
We have characterized the head involution defective (hid) locus which is located within the chromosomal region 75B8-C1,2. During the morphogenetic reorganization of the embryonic head region, hid+ function is necessary for the movement of the dorsal fold across the procephalon and clypeolabrum, a process that forms the frontal sac. The absence of the frontal sac in the hid mutant embryos affects the formation of the dorsal bridge and disrupts the development of the larval cephalopharyngeal skeleton. In addition to its embryonic role, this same hid function is also required during pupal development for the 360 degrees rotation of the male terminalia about the anterior-posterior body axis, and for a late step of wing blade morphogenesis. Although the abnormal wing phenotype caused by the Wrinkled (W) mutation is quite different from the one resulting from the loss-of-function hid mutations, the characterization of EMS-induced W revertants reveals that W is actually an antimorphic allele of hid.  相似文献   

20.
Background information. The BOR (branchio‐oto‐renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr‐1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant‐negative effects of EYA1 mutations may have a role in the pathogenesis of BOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号