首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fishery-aspects of eutrophication   总被引:3,自引:0,他引:3  
Summary Eutrophication influences among others food supply, prey catchability, reproduction success, growth and mortality of fish. The first stages of eutrophication are favourable for many fish species. Proceeding eutrophication interferes so strongly with the environment that fish is brought in a vulnerable position: vegetation, which is a prerequisite for a number of species, disappears; oxygen depletion near the bottom affects fish food organisms; turbidity hampers catchability of preyfish and decomposition of dead phytoplankton or vegegation may especially at the end of the summer result in lethal oxygen contents. Hence at higher eutrophic levels the fish population surpasses the optimum and decreases again. These optima vary with the species; for the most important species the sequence from oligotrophic to hypertrophic is: 1. Coregonids and Salmondis, 2. pike, 3. roach and perch, 4. pikeperch, 5. bream. Hence the fish populations of very turbid hypertrophic waters are dominated by bream and pikeperch. This population will furthermore usually consist of smaller quantities of eel, smelt, ruffe and white bream. The total fish population in such a hypertrophic water is considerably larger than in a oligotrophic or mesotrophic lake. The vulnerability of the fish community, however, has increased too. In the hypertrophic situation the oxygen supply is the weak spot and every interfering negative influence, as for example sewage discharge, may have disastrous consequences. The many severe fish mortalities prove this to be a real danger.  相似文献   

2.
The fish community in Tjeukemeer was monitored from 1971 to 1988 by trawling, and during the summer of 1988 the distribution of the more abundant species was determined in relation to size and location. Bream, pikeperch and smelt were the most dominant fishes, whereas roach, white bream, perch and ruffe comprised <10% of the total catches. After the termination in 1977 of the intensive gillnet fishery both pikeperch >50 cm and bream >30 cm increased in biomass, but roach >15 cm and perch >15 cm virtually disappeared and pikeperch <50 cm substantially decreased. Only smelt, ruffe, white bream and bream <30 cm hardly changed in biomass. Bream, pikeperch, perch and smelt were restricted to the open water zone, but roach <15 cm and 0 + bream were confined to the littoral zone. White bream and ruffe did not show a distinct habitat preference. Because the recruitment of smelt is largely dependent on immigration from the IJsselmeer, a feed-back between the smelt and pikeperch population is lacking. Because the carrying capacity of the pikeperch population is mainly determined by smelt, the other fish <15 cm are very vulnerable to predation when the smelt population is consumed, before a new year-class of smelt is recruited, or when the smelt fails to recruit. The vulnerability to predation of the different species and their feeding habits are discussed in relation to their distribution.  相似文献   

3.
The forage base and the food selectivity of 0+ representatives of six abundant freshwater fish species were studied in a shallow, eutrophic Dutch lake. Most species relied on the zooplankton; the size-selective predation in early summer was directed to the smaller copepods and in late summer to larger cladocerans and copepods than concurrently present in the lake. Daphnia spp. and cyclopoid copepods were the main zooplankton taxa for smelt, perch and pikeperch. Energetically, the large cladoceran, Leptodora kindtii, was especially important for pikeperch. Bream and roach preyed upon smaller zooplankton than the other fish species. The influence of the zooplankton predation by abundant 0+ fish was clear from a small mean Daphnia size in September; this size is to be used as an indicator in fishery management. Neomysis integer, the most important macrofauna species, was consumed by perch, pikeperch and ruffe; pikeperch was most size-selective in this respect. The 0+ ruffe was à typically benthivorous fish. Only the 0+ pikeperch became piscivorous, especially in years when smelt was abundant.  相似文献   

4.
The interactions between the higher trophic levels in a shallow eutrophic lake were studied during the course of a year. Three fish species determined the main pathways of organic matter flow within the system: the predominantly planktivorous bream (Abramis brama), the obligate planktivorous smelt (Osmerus eperlanus), and the piscivorous pikeperch (Stizostedion lucioperca). Of the thirteen common zooplankton taxa Daphnia hyalina and cyclopoid copepods were utilized most by the planktivorous fish, while the large production of small cladocerans is almost left unutilized.The seasonal variations of production and consumption are large. This is mainly affected by seasonal variation of the water temperature. The production of O + smelt is efficiently utilized by the pikeperch. Being the most important zooplankton consumer, as well as the most important prey group, O + fish plays a key role in the Tjeukemeer food web.  相似文献   

5.
The fish community in the Loosdrecht lakes is dominated by bream, pikeperch and smelt and is characteristic of shallow eutrophic lakes in The Netherlands. The biomasses of the respective fish species amount to ca. 250, 25 and 10 kg ha–1 and correspond to those in Tjeukemeer, another lake in The Netherlands. The average size of bream, however, is much smaller in the Loosdrecht lakes as a consequence of poorer feeding conditions. The zooplankton community in the Loosdrecht lakes is predominantly composed of relatively small species such as Daphnia cucullata, Bosmina coregoni and cyclopoid copepods, whereas in Tjeukemeer, Daphnia hyalina is permanently present in relatively high densities and the other species show a larger mean length. In the Loosdrecht lakes, the absence of D. hyalina and the smaller sizes of the other zooplankton species could be the consequence of a higher predation pressure, in combination with unfavourable feeding conditions for the zooplankton including the low density of green algae and the high density of filamentous cyanobacteria. A biomanipulation experiment in Lake Breukeleveen, one of the Loosdrecht lakes, indicated that feeding conditions were too unfavourable for large zooplankton to develop in spring, when the reduced fish biomass was not yet supplemented by natural recruitment and immigration.  相似文献   

6.
In 1987, the Bleiswijkse Zoom, a small, shallow lake in The Netherlands, was divided into two compartments to investigate the possible use of biomanipulation as a tool for restoring the water quality of hypertrophic lakes. The density of the fish stock before restoration was about 650 kg.ha–1, composed mainly of bream, white bream and carp. Pikeperch was the main fish predator in the lake. In April, 1987, in one compartment (Galgje) all planktivorous bream and white bream and about 85% of the benthivorous bream and carp were removed. Advanced pikeperch fry were introduced as predator during the transient period. The other compartment (Zeeltje) was used as a reference. Removal of the fish in Galgje resulted in low concentrations of chlorophyll-a, total phosphorus, nitrogen and suspended solids. The absence of bottom-stirring activity by benthivorous fish and the low chlorophyll-a concentrations led to an increase in the Secchi disk transparency from 20 to 110 cm. Within two months after removal of the fish, macrophytes, mainly Characeae, became abundant. Until July the high density of large zooplankton species caused low algal biomass. From June onwards, the zooplankton densities decreased, but the algal concentrations remained low. This is probably because of nutrient limitation or depression of algal growth by macrophytes or both. Compared with the non-treated compartment the number of fish species in the treated compartment was higher. Perch, rudd and roach, i.e. the species associated with aquatic vegetation, were found in the samples. The survival of the O+ pikeperch was poor. The pikeperch could not prevent the growth of young cyprinids. Within two months after the removal of the fish a habitat for northern pike was created.  相似文献   

7.
In a two-year-study, the fish community of the Loosdrecht Lakes area was characterized with regard to the professional fishery and the forage base. The lakes are shallow (mean depth 2 m) and eutrophic to hypertrophic. The bream,Abramis brama, dominates the fish biomass. The pikeperch,Stizostedion lucioperca, is the main predator.Bream up to 30 cm have a slow growth rate and are in a bad condition. A faster growth rate and a better condition are shown by bream of 30 cm and more. The small bream feeds on chironomid larvae, benthic cladocerans and zooplankton. The better condition of bream over 30 cm is explained by the more efficient feeding of larger bream onChironomus plumosus larvae. Pikeperch show a fast growth rate and a good condition. Recruitment is limited by the low densities of smelt,Osmerus eperlanus, leaving cannibalism as the most important way for the 0+ pikeperch to become piscivorous and to manifest a fast growth.The impact of the professional gillnet fishery on bream and pikeperch is small because the mesh sizes in use are as large as 75–100 mm bar mesh.The planktivorous 0+ pikeperch consumes mainly the carnivorous zooplanktersLeptodora kindtii and cyclopoids. The zooplankton community lacks large herbivorous species likeDaphnia hyalina, capable of consuming bluegreens. A possible experiment in biomanipulation with a view to find out whether the development ofD.hyalina is depressed by the small planktivorous cyprinids, is predator enhancement with the aid of a stocking programme for indoor-raised 0+ pikeperch in early summer.  相似文献   

8.
Zooplankton,fish and fisheries in tropical freshwaters   总被引:9,自引:2,他引:7  
C. H. Fernando 《Hydrobiologia》1994,272(1-3):105-123
About 40% of all fish species occur in freshwater, although only 1% of the globe is occupied by freshwaters. The tropics harbour a high percentage of these fishes. Freshwater zooplankton on the other hand is far less diverse than its marine counterpart and the tropics do not harbour a markedly high percentage of freshwater species either. The antecedents of freshwater zooplankton appear to have come from riverine and terrestrial habitats via temporary habitats (ponds, floodplains). The present zooplankton composition has also been shaped by, among other factors, the highly efficient zooplanktivorous modern teleosts which have restricted the formerly widespread Branchiopoda mainly to fishless freshwaters. Those Branchiopoda frequently co-existing with fishes (Cladocera) have their size composition strongly influenced by fish predation. Circumstantial evidence indicates that pelagic zooplankton (Cladocera, Copepoda, Rotifera) appear to provide a relatively scarce food supply relative to the littoral region for the early stages of fishes. Also, unpredictability of zooplankton may be involved here. These factors have led to the loss of planktonic eggs and the siting of fish breeding in shallow littoral situations, where other animal foods besides zooplankton are also available, especially for later stages of juvenile fish. The Ostariophysi breed in the shallow expanses of flood waters while the Cichlidae, some of which breed like Ostariophysi, also breed in standing waters in the littoral of lakes or floodplains. In all these locations zooplankton and benthic organisms, especially insects, are available. The cichlids are, in addition, provided with parental care. Predation on young fishes is also reduced by these strategies. Young fishes may also be adapted to feed on patches of zooplankton and other food in their breeding grounds. Tropical pelagic clupeids and cyprinids may breed continuously. Some of these clupeids in rivers breed at low water.Zooplankton, supplemented by other animal food is more critical to achieving the potential fish yields in the tropics than in temperate freshwaters because fish yields in the tropics can be very high indeed. The high metabolic rate of young fishes in the tropics adds to the demand for food. Tropical freshwaters have a relatively high primary production but a low zooplankton/phytoplankton ratio. Zooplankton is kept small in size and biomass by continuous predation. Herbivorous fishes can sustain very high fish yields in the tropics but they must have a high fecundity and high survival of young produced seasonally, mainly in rivers or even continuously as in lakes and reservoirs to weather predation. Rich littoral zooplankton and benthos combined with omnivory and a higher efficiency in the use of the available animal food by newly hatched fishes may be critical factors linking fish yields to zooplankton in tropical freshwaters. The ability of herbivorous tilapias to give very high fish yields in shallow tropical lakes may also be due to their efficient use of animal food, algae and microphagy in young stages besides other favourable adaptations like opportunistic feeding on detrities and the ability to feed on and digest cyanobacteria, abundant in the tropics.  相似文献   

9.
Interactions between zooplankton and fish in a fertilized lake   总被引:16,自引:0,他引:16  
The effects of fish predation on the zooplankton community in an oligotrophic lake, Langvatn, near Trondheim in Central Norway, were investigated during a six-year period (1973–1978), together with the added effects of changes produced by adding artificial fertilizer in 1975 and 1976. The improved nutrient conditions in 1975 resulted in a rapid increase in biomass and production of the largest herbivore zooplankton species and of the fish population. A change in the behaviour and food habits of the arctic char was recorded; they became more pelagic and fed mainly on zooplankton. An increased survival rate of 0-group and biomass of planktivorous fish in 1975 enhanced the degree of fish predation on the zooplankton during subsequent years (1976–1978). As a consequence of fish predation, the composition of the zooplankton changed, from a mainly large-sized to a mainly small-sized community, dominated by Bosmina longirostris and rotifers. Since fish predation is size-selective and visibility-dependent, it induced a decrease in mean size and in body length at onset of maturity of the cladoceran populations and probably also weakened their ability to produce resting eggs.  相似文献   

10.
We developed a mechanistic model of nutrient, phytoplankton, zooplankton and fish interactions to test the effects of phytoplankton food quality for herbivorous zooplankton on planktonic food web processes. When phytoplankton food quality is high strong trophic cascades suppress phytoplankton biomass, the zooplankton can withstand intense zooplanktivory, and energy is efficiently transferred through the food web sustaining higher trophic level production. Low food quality results in trophic decoupling at the plant-animal interface, with phytoplankton biomass determined primarily by nutrient availability, zooplankton easily eliminated by fish predation, and poor energy transfer through the food web. At a given nutrient availability, food quality and zooplanktivory interact to determine zooplankton biomass which in turn determines algal biomass. High food quality resulted in intense zooplankton grazing which favored fast-growing phytoplankton taxa, whereas fish predation favored slow-growing phytoplankton. These results suggest algal food quality for herbivorous zooplankton can strongly influence the nature of aquatic food web dynamics, and can have profound effects on water quality and fisheries production. Handling editor: D. Hamilton  相似文献   

11.
SUMMARY 1. Piscivore stocking at artificially high densities and fishing are the two common approaches to reduce the amount of planktivorous and benthivorous fish in lake biomanipulation programmes. Both measures have advantages and disadvantages, but their relative efficacy has not previously been directly compared.
2. We calculated the average annual catch of roach and bream in a lake undergoing long-term biomanipulation (Feldberger Haussee, Germany) by seining each year between 1992 and 1998. We compared this value with a bioenergetics estimate of annual consumption rates of the dominant cohorts of piscivores, pikeperch and pike, in 1997 and 1998. We also determined species composition and length distribution of prey fish in stomachs of the piscivores.
3. Roach was the dominant prey species of both pikeperch and pike, whereas bream was rarely taken by either piscivorous species. Seining removed on average larger specimens of roach than were found in the stomachs of the piscivores.
4. Based on stocking densities of the piscivores, published mortality rates, and individual consumption rates, feeding of pikeperch and pike on roach exceeded the manual removal of roach by seining by a factor of 4–15 (biomass) in 1997 and 1998.
5. Based on these results, a combination of fishing and piscivore enhancement is recommended. Whereas the stocks of adult roach and bream have to be reduced mainly by fishing, the predation of piscivores should be directed predominantly towards the juvenile zooplanktivorous fish. Therefore, small size-classes of piscivorous fish should be promoted by fisheries management, including stocking and harvest regulations.  相似文献   

12.
Morphotypes for 67 lakes in the German lowlands were derived, based on maximum depth and mixis type. A threshold of 11 m maximum depth was identified to be the best level to discriminate shallow from deep lake morphotypes. The fish communities in these two morphotypes were significantly different. Indicator species analyses based on fish biomasses found vendace Coregonus albula in deep lakes and ruffe Gymnocephalus cernuus , bream Abramis brama , white bream Abramis bjoerkna , roach Rutilus rutilus , pikeperch Sander lucioperca and small perch Perca fluviatilis in shallow lakes to be the most representative species of their communities. Lake productivity was closely related to biomass and in part abundance of the type‐indicator species, with vendace declining with increasing chlorophyll a concentration in the deep lakes, whereas biomass of pikeperch, bream, white bream and ruffe increased and biomass of small perch decreased with increasing chlorophyll a . These results indicate that assessment of ecological integrity of lakes by their fish fauna is generally possible, if lakes are initially separated according to a depth‐related morphotype before the assessment, and if eutrophication is considered to be the main anthropogenic degradation.  相似文献   

13.
Based on the study of over 500 zooplankton samples collected in Sri Lanka (Ceylon) during 1965–1974, the species composition from different habitats is analysed. The zooplankton assemblage is typically tropical with relatively few species of Cladocera and Copepoda. The Rotifera include a large number of species of the genus Brachionus. The limnetic zooplankton resembles the pond zooplankton closely in that all the eurytopic species found in the different types of habitats, including ponds, also occur in the limnetic zooplankton. The large Cladocera belonging to the genus Daphnia are very rare. In general, large zooplankters are absent. The size composition of the zooplankton has a smaller range than in temperate regions. This is due to the absence of large-sized zooplankton species. The reasons for the differences in species variety and size composition between zooplankton of temperate and tropical regions is perhaps due to a number of factors. These include the effects of high and uniform temperatures, food availability and predation by fish and invertebrates.  相似文献   

14.
Synopsis Most of the lakes in The Netherlands are turbid and without vegetation. This is regarded as the result of increasing eutrophication within the last decades. Under these conditions common bream, roach, and white bream are the most common cyprinids. In six shallow (1–3 m), wind exposed lakes the abundance of common bream and roach was linked to the abundance of pikeperch; bream dominated when pikeperch was abundant, but when the latter species was rare, roach was dominant and the biomass of bream was reduced. The biomass of white bream was always relatively low. In lake Tjeukemeer the distribution of roach < 20 cm fork length (FL) and bream was also related to the distribution of pikeperch. Only roach > 20 cm FL managed to coexist with pikeperch in the open water area, whereas roach < 20 cm was confined to the littoral zone where pikeperch was nearly absent. Bream occurred mainly in the open water and avoided the littoral zone where it competed with roach. White bream occupied an intermediate position, occurring in relatively low density both in the littoral zone and in open water. The importance of predation and competition in determining the distribution and abundance of roach and common bream in the eutrophic lakes of The Netherlands is discussed.  相似文献   

15.
0+ perch predation on 0+ bream: a case study in a eutrophic gravel pit lake   总被引:2,自引:0,他引:2  
SUMMARY 1. We studied the population dynamics of 0+ fish in a eutrophic gravel pit lake in which predation of 0+ Eurasian perch on other 0+ fish was suspected to influence perch growth and the structure of the fish community, with effects on the lake food web. 2. The adult fish community was dominated by piscivorous species, especially perch, and the 0+ fish community was dominated by perch and bream. Bream grew to a total length of 80 mm between May and the end of August, gradually decreased in numbers during the summer, and completely disappeared in autumn. Stomach analysis revealed that 0+ perch ≥28 mm fed on 0+ bream. 3. The initially unimodal cohort of 0+ perch gradually broadened and became bimodal by the end of July. Fish of the larger, piscivorous cohort grew faster (1.4 mm day?1) than the smaller, zooplankton‐consuming fish (0.6 mm day?1). Although individuals of both cohorts later consumed zooplankton and grew at similar rates (0.5 mm day?1), only perch of the large cohort (mean TL 125 mm) were found by mid‐October. Intraspecific competition for food or cannibalism of older perch may have contributed to the disappearance of the smaller perch. 4. Early piscivory of the fast‐growing 0+ perch apparently resulted in the disappearance of 0+ bream by the end of the growing season and precocious maturation of male perch. In contrast to findings in other studies, these large 0+ perch thus avoided the juvenile bottleneck by switching to piscivory early during their ontogenetic development. 5. The observations of this study suggest that early piscivory of 0+ perch can have a long‐lasting impact on fish communities in eutrophic lakes, particularly if prey fish are abundant and the structural complexity of the lake is low. Furthermore, early piscivory of 0+ perch may help prevent the expected increase in 0+ cyprinids following reduction of adult cyprinids, which is considered important to ensure the long‐term success of biomanipulation experiments.  相似文献   

16.
Food supply and prey selection in planktivorous cyprinidae   总被引:4,自引:0,他引:4  
Erik Bohl 《Oecologia》1982,53(1):134-138
Summary In small Bavarian lakes, the gut contents of the Cyprinid fish roach (Rutilus rutilus), rudd (Scardinius erythrophtalamus), bream (Abramis brama) and bleak (Alburnus alburnus), and the actural food supply during the fish's feeding period were examined in relation to the species composition of zooplankton. Accompanied by feeding experiments in the laboratory, the selective effect of fish predation could be attributed to the distribution patterns of prey and predator in time and space, to the prey's specific visibility and escape ability and, to some extent, to the fish's active choice. The possibility that the species composition of zooplankton is regulated was indicated only in the fish's positively abundance-dependent preference for the prey types and restricted to only a few plankter species.  相似文献   

17.
Recruitment areas for freshwater fish are often negatively affected by eutrophication and physical disturbances. Vegetated areas, which are important nursery habitats, are reduced and water turbidity increased. As a method of compensation, we tested artificial substrata for young-of-the-year fish. The structures were made of spruce bundles, with and without surrounding nets, and placed in a hyper-eutrophic very turbid environment and in an undisturbed area with clear water. Both habitats were devoid of submerged vegetation. Young fish abundance in treated areas was compared with adjacent reference sites. In the clear water area, the abundance of all investigated species – perch, pike, bream, silver-bream and roach – was higher in areas with artificial refuges. A similar response was evident for cyprinids in the turbid environment. High abundance of pikeperch and ruffe appeared in the hyper-eutrophic test area. Neither of these species, nor perch, was attracted to the artificial refuges. The lack of response in perch and pikeperch suggests that the importance of structural refuge decreases in very turbid water for these species. Of the two methods tested, spruce bundles with surrounding nets generally attracted most young fish, implying that the nets further increased the refuge capacity by reducing predation risk. The conclusion is that artificial habitats could improve recruitment habitats and that protective devices can increase refuge capacity.  相似文献   

18.
SUMMARY 1. We used an individual based modelling approach for roach to (i) simulate observed diel habitat shifts between the pelagic and littoral zone of a mesotrophic lake; (ii) analyse the relevance of these habitat shifts for the diet, activity costs and growth of roach; and (iii) quantify the effects of a hypothetical piscivore-mediated (presence of pikeperch) confinement of roach to the littoral zone on roach diet, activity costs and growth.
2. The model suggests that in the presence of pikeperch, roach shifts from zooplankton as the primary diet to increased consumption of less nutritious food items such as macrophytes, filamentous algae and detritus.
3. The growth of roach between May and October was predicted to be significantly higher in the absence of pikeperch, although the net activity costs were about 60% higher compared with the scenario where pikeperch were present.
4. These modelling results provide quantitative information for interpreting diel horizontal migrations of roach as a result from a trade-off between food availability and predation risk in different habitats of a lake.
5. Altering the habitat selection mode of planktivorous roach by piscivore stocking has the potential to reduce zooplankton consumption by fish substantially, and could therefore be used as a biomanipulation technique complementing the reduction of zooplanktivorous fish.  相似文献   

19.
In laboratory feeding trials, we analyzed the feeding behavior and selectivity of the cichlid, Sarotherodon galilaeum, for zooplankton prey from Lake Kinneret, Israel. The feeding behavior was dependent on fish size. Fish less than 20 mm SL fed on zooplankton as obligate particulate feeders. Fish from 20 to 42 mm SL fed either as particulate feeders or as filter feeders. Fish larger than 62 mm SL fed as obligate filter feeders. Particulate-feeding fish were size selective and had highest feeding electivities for large-sized zooplankton species. Filter-feeding fish had highest feeding electivities for zooplankton species with poor escape ability. In general, S. galilaeum predation pressure would be greatest on Ceriodaphnia reticulata, a large-bodied and easily captured species which is selected by both particulate-feeding and filter-feeding fish.  相似文献   

20.
Diel vertical migration (DVM) is a complex and dynamic behaviour against predation because the reaction of migrating organisms to light intensity plays a primary role, but is modified by other factors. In the relatively shallow but thermally stratified Lake Eymir, Daphnia pulex de Geers utilized vertical refugia afforded by the hypolimnion during both day and night. Differences in general vulnerability to fish predation determined the differences in their mean residence depths (MRDs) of different population categories such as most conspicuous and vulnerable individuals of adult with eggs inhabited the deepest depth, whereas juveniles stayed close the thermocline. In late spring, profoundly high amplitude of displacement within the hypolimnion, probably due to the hypolimnion being well-lit and relatively well-oxygenated for the fish and rather unsafe for the large-sized daphnids, was recorded. Therefore, the large-sized daphnids daytime refuge was close to the bottom whereas at night they moved upward to benefit from warmer water temperature along with food availability in the presence of fish predation but still remained below the thermocline. In summer, the insignificant amplitude of the hypolimnetic, which later became epilimnetic, displacements were probably due to the near-anoxic condition found below the thermocline. This might have deterred the fish, thus providing a safer refuge for daphnids in the below thermocline, which afterwards became the above thermocline. Low oxygen availability was regarded as the summer proximate factor. The abundant food and warmer water conditions found in the below/above thermocline also accounted for absence of DVM in summer. Consequently, this study suggests that DVM by Daphnia is an adaptation that is plastic to changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号