首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Human milk lactoferrin (hmLF) is the most abundant glycoprotein present in human milk and displays a broad range of protective functions in the gut of newborn infants. hmLF is N-glycosylated, but little is known about the lactation stage-related development of the glycosylation phenotype. hmLF glycosylation from milk samples from five donors during the first 10 weeks of lactation was assessed and observed to be more diverse than previously reported. During this period dynamic changes in glycosylation were observed corresponding to a decrease in glycosylation in the second week followed by an increase in total glycosylation as well as higher order fucosylation thereafter. Gene expression analysis was performed in milk somatic cells from a sixth subject. It was found that fucosyltransferase expression increased during entire period, whereas expression of genes for the oligosaccharyl transferase complex decreased in the second week. The effect of hmLF glycosylation was examined for the protein's ability to affect bacterial binding to epithelial cells. hmLF significantly inhibited pathogen adhesion and purified hmLF glycans significantly reduced Salmonella invasion of colonic epithelial cells to levels associated with non-invasive deletion mutants. This study indicates that hmLF glycosylation is tightly regulated by gene expression and that glyco-variation is involved in modulating pathogen association.  相似文献   

2.
Characterization of the N-glycans from human pancreatic ribonuclease (RNase 1) isolated from healthy pancreas and from pancreatic adenocarcinoma tumor cells (Capan-1 and MDAPanc-3) revealed completely different glycosylation patterns. RNase 1 from healthy cells contained neutral complex biantennary structures, with smaller amounts of tri- and tetraantennary compounds, and glycans with poly-N-acetyllactosamine extensions, all extensively fucosylated. In contrast, RNase 1 glycans from tumor cells (Capan-1) were fucosylated hybrid and complex biantennary glycans with GalNAc-GlcNAc antennae. RNase 1 glycans from Capan-1 and MDAPanc-3 cells also contained sialylated structures completely absent in the healthy pancreas. Some of these features provide distinct epitopes that were clearly detected using monoclonal antibodies against carbohydrate antigens. Thus monoclonal antibodies to Lewis(y) reacted only with normal pancreatic RNase 1, whereas, in contrast, monoclonal antibodies to sialyl-Lewis(x) and sialyl-Lewis(a) reacted only with RNase 1 secreted from the tumor cells. These glycosylation changes in a tumor-secreted protein, which reflect fundamental changes in the enzymes involved in the glycosylation pathway, open up the possibility of using serum RNase 1 as a tumor marker of pancreatic adenocarcinoma.  相似文献   

3.
Quarter samples of foremilk and residual milk were taken approximately every second week from 2 days post partum (pp) throughout lactation month 9, from 5 dairy cows in their second lactation period. Bacteriologically positive milk samples were excluded. The aim was to study the variation in total and differential leukocyte counts, N-acetyl-ß-D-glucosaminidase (NAGase), antitrypsin (ATR) and serum albumin (BSA) in milk during the lactation period and different stages of oestrous cycle. Also the between milkings variation was studied from lactation month 4 to 9. At 2 days pp, each fraction of milk contained significantly higher numbers of leukocytes and had a higher activity of NAGase and ATR than later in the lactation period. In foremilk the highest content of BSA was also recorded at 2 days pp. From lactation month 2 to 9, stage of lactation had, in general, a slight effect on the variation in the variables measured. The total leukocyte count in residual milk tended to increase as lactation proceeded. The proportion of monocyte-macrophages in foremilk was significantly decreased during the last 4 months. NAGase and BSA in both fractions and ATR in residual milk increased significantly towards the end of the lactation period. From lactation month 4 to 9 the highest recorded ranges of variation between milkings, within quarter and stage of lactation, in the total leukocyte count, proportions of neutrophils, lymphocytes, monocyte-macrophages, NAGase, ATR and BSA in foremilk were 215 × 103ml, 42 %, 34 %, 54 %, 6.68 units, 0.36 units and 0.14 mg/ml respectively. The corresponding figures in residual milk were higher except for the variation in BSA which was slightly lower in residual milk than in foremilk. In residual milk there was a positive correlation between the proportion of neutrophils and the total leukocyte count, when calculated on data from all cows and the entire experimental period. During the oestrous periods, the proportion of neutrophils in residual milk was higher than during the dioestrous periods. Foremilk and residual milk differed in the total as well as the differential leukocyte counts in all the various stages of lactation, whereas the contents of NAGase, ATR and BSA were equal in both fractions. The exception was 2 days pp when the proportions of lymphocytes were equal in both fractions and BSA-significantly higher in foremilk than in residual milk.  相似文献   

4.
Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of alpha-lactalbumin, beta-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young.  相似文献   

5.
Changes of beta-casomorphin content in human milk during lactation   总被引:1,自引:1,他引:0  
Milk is the best, complete food important for the development and nourishment of a neonate. Except for nutrients, milk contains biologically active opioid peptides derived from beta-casein, named beta-casomorphins (BCMs), which can exert effects in the gastrointestinal tract as well as in the whole body of neonates. The content of beta-casomorphins in human milk during maturation phases has not been studied so far. The aim of this study was to determine the content of beta-casomorphin-5 and -7 in human milk in different phases of lactation. A significantly higher concentration of both beta-casomorphins was found in colostrum than in mature milk. The concentration of beta-casomorphin in milk collected in the second month of lactation was similar to the level obtained in the fourth month of lactation. The content of beta-casomorphins in human milk was observed with the period of lactation. The level of opioid peptides may depend on the function of these peptides in neonate's body and may be associated with the maturation process.  相似文献   

6.
The scavenger receptor C-type lectin (SRCL) is a glycan-binding receptor that has the capacity to mediate endocytosis of glycoproteins carrying terminal Lewis(x) groups (Galβ1-4(Fucα1-3)GlcNAc). A screen for glycoprotein ligands for SRCL using affinity chromatography on immobilized SRCL followed by mass spectrometry-based proteomic analysis revealed that soluble glycoproteins from secondary granules of neutrophils, including lactoferrin and matrix metalloproteinases 8 and 9, are major ligands. Binding competition and surface plasmon resonance analysis showed affinities in the low micromolar range. Comparison of SRCL binding to neutrophil and milk lactoferrin indicates that the binding is dependent on cell-specific glycosylation in the neutrophils, as the milk form of the glycoprotein is a much poorer ligand. Binding to neutrophil glycoproteins is fucose-dependent, and mass spectrometry-based glycomic analysis of neutrophil and milk lactoferrin was used to establish a correlation between high affinity binding to SRCL and the presence of multiple clustered terminal Lewis(x) groups on a heterogeneous mixture of branched glycans, some with poly N-acetyllactosamine extensions. The ability of SRCL to mediate uptake of neutrophil lactoferrin was confirmed using fibroblasts transfected with SRCL. The common presence of Lewis(x) groups in granule protein glycans can thus target granule proteins for clearance by SRCL. PCR and immunohistochemical analysis confirm that SRCL is widely expressed on endothelial cells and thus represents a distributed system that could scavenge released neutrophil glycoproteins both locally at sites of inflammation or systemically when they are released in the circulation.  相似文献   

7.
Tamm-Horsfall glycoprotein (THP) is a major glycoprotein associated with human urine that binds pro-inflammatory cytokines and also inhibits in vitro T cell proliferation induced by specific antigens. THP derived from human pregnancy urine (designated uromodulin) has previously been shown to be 13-fold more effective as an inhibitor of antigen-induced T cell proliferation than THP obtained from other sources. Structural analysis of human THP and uromodulin has for the first time revealed that these glycoproteins are O-glycosylated. THP from nonpregnant females and males expresses primarily core 1 type O-glycans terminated with either sialic acid or fucose but not the sialyl Lewis(x) epitope. By contrast, the O-glycans linked to uromodulin include unusual core 2 type glycans terminated with one, two, or three sialyl Lewis(x) sequences. The specific association of these unusual carbohydrate sequences with uromodulin could explain its enhanced immunomodulatory effects compared with THP obtained from males and nonpregnant females. Analysis of THP from one of the pregnant females 2 months postpartum showed a reversion of the O-glycan profile to that found for a non-pregnant female. These data suggest that the glycosylation state of uromodulin could be under the regulation of steroidal hormones produced during pregnancy. The significant physiological implications of these observations are discussed.  相似文献   

8.
The human epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein having 11 potential N-glycosylation sites in its extracellular domain. N-Glycosylation is needed for proper membrane insertion, EGF binding and receptor functioning. The human epidermoid carcinoma A431 cell line secretes a soluble 105 kDa glycoprotein (sEGFR) that represents the extracellular domain of the membrane-bound form, and its glycosylation pattern has been investigated. After liberation of the oligosaccharides from sEGFR with PNGase F, the glycans were fractionated along different routes, including Concanavalin A affinity chromatography, anion-exchange chromatography, HPLC and high-pH anion-exchange chromatography. The oligosaccharide fractions were characterized by 500- and 600-MHz 1H-NMR spectroscopy and mass spectrometry (FAB, ESI, and MALDI-TOF). The oligomannose-type glycans range from Man5GlcNAc2 to Man8GlcNAc2 and account for 17% of the total carbohydrate moiety. Furthermore, di-, tri'- and tetraantennary complex-type structures are present, both neutral and (alpha2-3)-sialylated (up to tetrasialo), comprising 24 and 59%, respectively, of the total carbohydrate moiety. In this study, 32 new complex-type glycans are characterized containing the Le(x), Le(Y), and sialyl-Le(x) determinants, the bloodgroup A and H antigens, as well as the ALe(Y) determinant. This first comprehensive glycosylation study on a human nonrecombinant receptor shows the immense heterogeneity of the glycosylation of sEGFR.  相似文献   

9.
M Iwamori 《Human cell》1989,2(1):7-14
Glycolipids are ubiquitous membrane components in various mammalian cells and participate in several functions through membrane. Until now, about 180 glycolipids with different carbohydrate structures have been characterized. Since alteration in glycolipids during cellular proliferation, differentiation and transformation is dramatic in general, several approaches have been attempted to clarify the meaning. Our findings that ganglioside composition in human milk is characteristically changed during the periods of lactation and that N-(O-linoleoyl-omega-hydroxylignoceroyl) sphingosyl glucose (ester CMH) in mammalian skin is characteristically synthesized during differentiation of epidermis are the examples to indicate the close association of glycolipids in cellular functions. GM3 ganglioside appeared in the later period of lactation has an activity to suppress cell growth of human breast cancer and ester CMH has an activity to promote the keratinization of epidermal cells, respectively. The observations indicate that glycolipids synthesized during cellular differentiation function as an signal transducer through plasma membrane. Structural bases of glycolipids to give such physiological activities are summarized and discussed in this communication.  相似文献   

10.
The detailed structures of N- glycans derived from bile salt-stimulated lipase (BSSL) found in human milk were determined by combining exoglycosidase digestion with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The N- glycan structures were conclusively determined in terms of complexity and degree of fucosylation. Ion-exchange chromatography with pulsed amperometric detection, together with mass-spectral analysis of the esterified N- glycans, indicated the presence of monosialylated structures. The molecular mass profile of esterified N- glycans present in BSSL further permitted the more detailed studies through collision-induced dissociation (CID) and sequential exoglycosidase cleavages. The N- glycan structures were elucidated to be complex/dibranched, fucosylated/complex/dibranched, monosialylated/complex/dibranched, and monosialylated/fucosylated/dibranched entities.  相似文献   

11.
Immune cells are known to express specific recognition molecules for cell surface glycans. However, mechanisms involved in glycan-mediated cell-cell interactions in mucosal immunity have largely been left unaccounted for. We found that several glycans preferentially expressed in nonmalignant colonic epithelial cells serve as ligands for sialic acid-binding Ig-like lectins (siglecs), the immunosuppressive carbohydrate-recognition receptors carried by immune cells. The siglec ligand glycans in normal colonic epithelial cells included disialyl Lewis(a), which was found to have binding activity to both siglec-7 and -9, and sialyl 6-sulfo Lewis(x), which exhibited significant binding to siglec-7. Expression of these siglec-7/-9 ligands was impaired upon carcinogenesis, and they were replaced by cancer-associated glycans sialyl Lewis(a) and sialyl Lewis(x), which have no siglec ligand activity. When we characterized immune cells expressing siglecs in colonic lamina propriae by flow cytometry and confocal microscopy, the majority of colonic stromal immune cells expressing siglec-7/-9 turned out to be resident macrophages characterized by low expression of CD14/CD89 and high expression of CD68/CD163. A minor subpopulation of CD8(+) T lymphocytes also expressed siglec-7/-9. Siglec-7/-9 ligation suppressed LPS-induced cyclooxygenase-2 expression and PGE(2) production by macrophages. These results suggest that normal glycans of epithelial cells exert a suppressive effect on cyclooxygenase-2 expression by resident macrophages, thus maintaining immunological homeostasis in colonic mucosal membranes. Our results also imply that loss of immunosuppressive glycans by impaired glycosylation during colonic carcinogenesis enhances inflammatory mediator production.  相似文献   

12.
Serum and milk Immunoglobulin M (IgM) concentrations in 11 mother-pup pairs were measured in southern elephant seals (Mirounga leonina) throughout lactation during 2 breeding seasons at King George Island. Samples were obtained sequentially throughout the suckling period (approximately 23 days). The IgM concentration was measured by single radial immunodiffusion on agarose plates. Milk IgM concentrations showed significant differences throughout lactation, with the highest concentrations on the 1st day (x=989.7 mg/dL skimmed milk; SD=433.2) followed by a sharp fall during the next 3–6 days of the suckling period. The ratio of milk IgM/serum IgM concentrations from mothers ranged from 0.21 to 21.92, with highest values in the 1st day of lactation (x=8.25, SD=5.4) and a decrease in concentration as lactation progressed. This was due to the fact that, throughout lactation, milk IgM concentrations fell while serum IgM values showed an increasing trend. Pups showed the lowest serum IgM values in the 1st day of the suckling period (x=13.0 mg/dL, SD=4.3) with an increasing trend as lactation progressed. Despite the high IgM concentrations of milk at day 1 of lactation, by 1 week of age pups had serum IgM concentrations only slightly greater than at birth. This suggests that much of this Ig was newly formed and little or no milk IgM was absorbed during the 1st week. Possibly, the function of ingested IgM is to provide local immunity in the pup's gut, during the first few days of postnatal life. Accepted: 26 March 2000  相似文献   

13.
Milk was collected at various stages of lactation from a group of tammar wallabies, M. eugenii, in which parturition had been synchronized. The milk carbohydrate was determined by a phenol-sulfuric acid method which had been modified to give equal colour yields for galactose and glucose. The mean carbohydrate content increased gradually during the first 6 months of lactation to a peak of 13 g hexose/100 ml of milk, but then fell rapidly to much lower values, over the following 2 months. Throughouth lactation, galactose was the predominant monosaccharide constituent of acid hydrolysates of the milk carbohydrate. Glucose, glucosamine, galactosamine and sialic acid were the only other monosaccharides present. Qualitative changes were investigated by gel filtration and thin-layer chromatography. During the first 6 months post partum the milk carbohydrate was composed of a variety of oligosaccharides including lactose, but from 8 months onwards it consisted mainly of free monosaccharides. Between 6 and 8 months an intermediate pattern was observed, i.e. a mixture of lower oligosaccharides and free monosaccharides. In two animals which suckled both a new-born pouch young and a young at foot, the mammary gland supplying the new-born secreted milk which was rich in oligosaccharides, whereas that supplying the young at foot produced milk in which the carbohydrates were mainly free monosaccharides, and which had a much lower carbohydrate content.  相似文献   

14.
The identification of genes involved in phenotypes related to milk quality is important for both economic and health aspects in livestock production. The aim of this study was to assess the level of gelsolin gene expression in two breeds of dairy sheep – Sarda and Gentile – with pronounced differences in quantitative and qualitative milk traits. Gelsolin, a type of actin-modulating proteins is involved in the processes of actin remodeling during cell growth and apoptosis; therefore a role of this protein in mammary changes during lactation was here hypothesized. Individual milk samples were collected three times during lactation from 26 ewes of the two breeds. The differential gene expression of gelsolin in the two breeds and the three lactation times was estimated by quantitative PCR on RNA extracted from milk somatic cells. Correlations of gelsolin gene expression with milk yield and quality and days of lactation were also estimated. The results showed that gelsolin gene expression was significantly higher in the Sarda compared to the Gentile at each lactation stage, in agreement with the longer lactation duration and the higher daily milk yield of the first breed. Significant correlations of gelsolin gene expression were found with milk fat content in Sarda breed (−0.46, P<0.05). Gelsolin expression analysis confirmed the link between gelsolin gene function and milk fat content of sheep.  相似文献   

15.
Human airway mucins represent a very broad family of polydisperse high molecular mass glycoproteins, which are part of the airway innate immunity. Apomucins, which correspond to their peptide part, are encoded by at least 6 different mucin genes (MUC1, MUC2, MUC4, MUC5B, MUC5AC and MUC7). The expression of some of these genes (at least MUC2 and MUC5AC) is induced by bacterial products, tobacco smoke and different cytokines.Human airway mucins are highly glycosylated (70–80% per weight). They contain from one single to several hundred carbohydrate chains. The carbohydrate chains that cover the apomucins are extremely diverse, adding to the complexity of these molecules. Structural information is available for more than 150 different O-glycan chains corresponding to the shortest chains (less than 12 sugars).The biosynthesis of these carbohydrate chains is a stepwise process involving many glycosyl- or sulfo-transferases. The only structural element shared by all mucin O-glycan chains is a GalNAc residue linked to a serine or threonine residue of the apomucin. There is growing evidence that the apomucin sequences influence the first glycosylation reactions. The elongation of the chains leads to various linear or branched extensions. Their non-reducing end, which corresponds to the termination of the chains, may bear different carbohydrate structures, such as histo-blood groups A or B determinants, H and sulfated H determinants, Lewis a, Lewis b, Lewis x or Lewis y epitopes, as well as sialyl- or sulfo- (sometimes sialyl- and sulfo-) Lewis a or Lewis x determinants. The synthesis of these different terminal determinants involves three different pathways with a whole set of glycosyl- and sulfo-transferases.Due to their wide structural diversity forming a combinatory of carbohydrate determinants as well as their location at the surface of the airways, mucins are involved in multiple interactions with microorganisms and are very important in the protection of the underlying airway mucosa.Airway mucins are oversulfated in cystic fibrosis and this feature has been considered as being linked to a primary defect of the disease. However, a similar pattern is observed in mucins from patients suffering from chronic bronchitis when they are severely infected. Airway mucins from severely infected patients suffering either from cystic fibrosis or from chronic bronchitis are also highly sialylated, and highly express sialylated and sulfated Lewis x determinants, a feature which may reflect severe mucosal inflammation or infection.These determinants are potential sites of attachment for Pseudomonas aeruginosa, the pathogen responsible for most of the morbidity and mortality in cystic fibrosis, and the expression of the sulfo- and glycosyl-transferases involved in their biosynthesis is increased by TNF.In summary, airway inflammation may simultaneously induce the expression of mucin genes (MUC2 and MUC5AC) and the expression of several glycosyl- and sulfo-transferases, therefore modifying the combinatory glycosylation of these molecules.  相似文献   

16.
The effects of cheese milk obtained at three times during lactation (weeks 4–5, 12–15, and 21–23) and cheese storage (up to 16 or 24 weeks) on meltability, sliceability, and color changes upon heating (232 °C for 5 min, high baking temperature, HT, or 130 °C for 75 min, low baking temperature, LT) of caprine milk cheeses were evaluated. The cheeses were manufactured from milk from Alpine goats and based on the procedures of Cheddar and Colby cheese manufacture. In Cheddar-like cheese, the sliceability (force required to slice sample) was at its highest when the cheese was made with milk from weeks 12–15 into lactation. Color change was variable although it tended to be lowest in cheese made at weeks 4–5 into lactation. In Colby-like cheeses, meltability was at its highest and sliceability was very poor (after 8 weeks of aging) when made with milk obtained later in lactation. Color changes were variable at the two different baking temperatures. As expected during aging, the meltability of the cheeses increased and the force required to slice the cheeses decreased with the significant changes occurring within the first 16 weeks for Cheddar-like and the first 8 weeks for Colby-like cheeses. The color changes upon heating were variable for aged Cheddar-like cheeses and did not change significantly for aged Colby-like cheeses. Color changes were highly correlated with proteolysis occurring during storage. Cheese milk obtained at different times of lactation and aging of the cheese impact the functional properties of caprine milk cheeses and will affect their optimal utilization.  相似文献   

17.
From 1997 to 2002, a female giant panda (Ailuropoda melanoleuca) was artificially stimulated and lactation was maintained, after her neonates were removed due to the female's inability to provide maternal care. Milk samples were collected and the amount of milk collected was quantified. The lactation curve of this animal was estimated based on the Gamma function: Yt=atbe−ct. The amount of milk collected showed significant, positive relationships with the number of days after parturition both in 1999 and in the whole study period from 1998 to 2002. This female's lactation curves fit the type I pattern of a typical mammalian lactation curve. Daily milk collection (g) during the first 30 days after parturition, and from 31 to 60 days after parturition, showed a consistent pattern with one peak at around 8:00 hr. More milk was collected during the latter period than during the former period. The amount of milk (g) collected on mucus excretion days was significantly less than that on days after mucus excretion had ended, yet no significant difference was found between milk collected one day before mucus days and on mucus days, or between milk collected one day before and one day after mucus days. Mucus excretion from the gastrointestinal tract significantly impacted the amount of milk collected. The results from this study may aid the captive propagation and conservation of giant pandas and other endangered and rare captive mammal species. Zoo Biol 28:331–342, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

18.
 In some species, including man and mouse, bile salt-stimulated lipase (BSSL) in milk catalyzes the hydrolysis of triacylglycerides into glycerol and free fatty acids, a reaction that is of particular importance during suckling. The enzyme is also secreted by the pancreas (referred to as carboxyl-ester hydrolase, CEH). We wished to localize sources and storage sites for BSSL/CEH in rats, in wild-type mice, and in transgenic mice producing recombinant human BSSL in milk. Immunoreactivity against several BSSL fragments was strong in the pancreatic acinar cells and moderate in the absorptive cells of the small intestine and in salivary duct cells of the mice, as well as in rats. Sections from lactating mammary glands of mouse, but not rat, also showed immunoreactivity for BSSL; the signal was strongest in the transgenic mice. Radioactive riboprobes for BSSL mRNA hybridized on sections of rat and mouse pancreatic acinar cells, and mouse mammary glands (both wild-type and transgenic). Using RT-PCR, it was possible to amplify BSSL mRNA from wild-type mouse pancreas and mammary gland, from rat submandibular glands, and, in a few cases, from rat liver. In transgenic mice, the BSSL mRNA was highly expressed only in lactating mammary gland, but could be detected in a few other organs as well. Accepted: 31 March 1998  相似文献   

19.
The transition between two lactations remains one of the most critical periods during the productive life of dairy cows. In this study, we aimed to develop a model that predicts the milk yield of dairy cows from test day milk yield data collected in the previous lactation. In the past, data routinely collected in the context of herd improvement programmes on dairy farms have been used to provide insights in the health status of animals or for genetic evaluations. Typically, only data from the current lactation is used, comparing expected (i.e., unperturbed) with realised milk yields. This approach cannot be used to monitor the transition period due to the lack of unperturbed milk yields at the start of a lactation. For multiparous cows, an opportunity lies in the use of data from the previous lactation to predict the expected production of the next one. We developed a methodology to predict the first test day milk yield after calving using information from the previous lactation. To this end, three random forest models (nextMILKFULL, nextMILKPH, and nextMILKP) were trained with three different feature sets to forecast the milk yield on the first test day of the next lactation. To evaluate the added value of using a machine-learning approach against simple models based on contemporary animals or production in the previous lactation, we compared the nextMILK models with four benchmark models. The nextMILK models had an RMSE ranging from 6.08 to 6.24 kg of milk. In conclusion, the nextMILK models had a better prediction performance compared to the benchmark models. Application-wise, the proposed methodology could be part of a monitoring tool tailored towards the transition period. Future research should focus on validation of the developed methodology within such tool.  相似文献   

20.
There are major quantitative and qualitative changes in the milk lipids during lactation in the tammar wallaby, Macropus eugenii. The crude lipid content of the milk is relatively low during the first 10 weeks of lactation; between 10 and 26 weeks post partum the lipid content increases gradually but after that it increases rapidly. The triglyceride fraction of the lipid at early stages of lactation contains a large amount of palmitic acid and relatively little oleic acid whereas mature milk exhibits little palmitic and much oleic acid. In the early stages of lactation fat represents 15% of the total solids and carbohydrate 55%; around 26-30 weeks post partum the carbohydrate moiety falls sharply to a level less than 2% of the solids while lipids increase to c. 60% of the solids. These changes coincide with increases in milk solids, emergence of the young from the pouch, ingestion of herbage, and fermentation of cellulose in the stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号