首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In early chick blastodermal morphogenesis, the hypoblast layer is organized beneath the epiblast and induces an axial structure. However, the origin of hypoblast cells and the mechanism of hypoblast layer formation are poorly understood. We hypothesized that the hypoblast layer is formed by an invasive process across the basement membrane of the juxtaposing epiblast, and tested the idea in vitro . Primary and secondary hypoblast cells from embryos at various pre-streak stages were dissociated into single cells and cultured on reconstituted basement membrane gel, laminin gel or fibronectin gel in the culture medium with or without serum for 24–48 h. As a result, we found that after 24 h of serum-supplemented culture, up to 35% of the hypoblast cells dissolved the gel and made holes on it. Similarly, up to 36% of the hypoblast cells showed invasiveness after 48 h in the serum-free culture. Furthermore, it was observed that Koller's sickle cells, which are regarded to be the progenitors of secondary hypoblast cells, penetrated those gels on which they were seeded. The posterior epiblast cells covering Koller's sickle were also invasive. These results suggest that the presumptive primary hypoblast cells that are known to mingle with epiblast cells invade through the basement membrane to form the hypoblast layer. Furthermore, the present results imply that invasion through the basement membrane may be involved in the formation of Koller's sickle, the anlage of secondary hypoblast.  相似文献   

2.
We report that a monoclonal antibody, HNK-1, identifies specific regions and cell types during primitive streak formation in the chick blastoderm. Immunohistochemical studies show that the cells of the forming hypoblast are HNK-1 positive from the earliest time at which they can be identified. Some cells of the margin of the blastoderm are also positive. The mesoderm cells of the primitive streak stain strongly with the antibody from the time of their initial appearance. In the epiblast, some cells are positive and some negative at pre-primitive-streak stages, but as the primitive streak develops a gradient of staining intensity is seen within the upper layer, increasing towards the primitive streak. At later stages of development, the notochord and the mesenchyme of the headfold are positive, while the rest of the mesoderm (lateral plate) no longer expresses HNK-1 immunoreactivity. This antibody therefore reveals changes associated with mesodermal induction: before induction, it recognizes the 'inducing' tissue (the hypoblast) and reveals a mosaic pattern in the responding tissue (the epiblast); after primitive streak formation, the mesoderm of the primitive streak that results from the inductive interactions expresses the epitope strongly. Affinity purification of HNK-1-related proteins in various tissues was carried out, followed by SDS-PAGE to identify them. The hypoblast, mesoderm and epiblast of gastrulating chick embryos have some HNK-1-related proteins in common, while others are unique to specific tissues. Attempts have been made to identify these proteins using Western blots and antibodies known to recognize HNK-1-related molecules, but none of the antibodies used identify the bands unique to any of the tissues studied. We conclude that these proteins may be novel members of the HNK-1/L2 family, and that they may have a role in cell interactions during early development.  相似文献   

3.
To investigate the contribution of the epiblast cell behavior to the primitive streak formation, we examined the motility of a single epiblast cell from pre-streak stage embryo in vitro . On the substratum that was evenly coated with laminin gel, epiblast cells attached well to the gel and one or a few very long and broad cellular processes protruded from their spherical cell bodies; however, they hardly locomoted on it. Unexpectedly, after overnight culture, half of the single cells dissolved the laminin gel beneath them to make well-like holes, and invaded in the holes. On the substratum lined parallel with the fibrous laminin gels supplemented with fibronectin, they locomoted actively in accordance with the alignment. That is, they were subjected to contact guidance. In locomotion they looked like snails, extending one or a few long and broad processes in a forward direction from the spherical cell bodies. However, on the substratum lined with laminin or fibronectin only, they did not locomote actively. Individual chick pre-streak epiblast cells had already been committed to invade, and their migratory nature existed in each cell, even though they were isolated from the epithelial sheet. The implication of these findings on the cellular basis of primitive streak formation will be discussed.  相似文献   

4.
Summary Recently fibronectin was shown to appear in the development of the chick for the first time as a thin band on the epiblastic side facing the hypoblast just prior to primitive streak formation. It was thus suggested that fibronectin might be instrumental in the migration of cells that lead to axis formation during primitive streak formation. In the present work we have examined simultaneously for the presence of fibronectin and the specific basement membrane glycoprotein laminin during primitive streak formation using immunofluorescence methods. Laminin was found to be expressed between the epiblast and the hypoblast of stage XIII1 chick blastoderms. During the immediately following process of streak formation the laminin was found to be continuously detectable throughout the area covered by the hypoblast, but disrupted on the streak area. Fibronectin was found to co-distribute with laminin in stage XIII and in the early primitive streak chick blastoderms. It is concluded that at stage XIII laminin and fibronectin form part of a basement membrane that is partially disrupted during the immediately following process of primitive streak formation in order to allow the migration of the streak-forming epiblastic cells during this morphogenetic process.  相似文献   

5.
Laminin-1 is essential for early embryonic basement membrane assembly and differentiation. Several steps can be distinguished, i.e., the expression of laminin and companion matrix components, their accumulation on the cell surface and assembly into basement membrane between endoderm and inner cell mass, and the ensuing differentiation of epiblast. In this study, we used differentiating embryoid bodies derived from mouse embryonic stem cells null for gamma1-laminin, beta1-integrin and alpha/beta-dystroglycan to dissect the contributions of laminin domains and interacting receptors to this process. We found that (a) laminin enables beta1-integrin-null embryoid bodies to assemble basement membrane and achieve epiblast with beta1-integrin enabling expression of the laminin alpha1 subunit; (b) basement membrane assembly and differentiation require laminin polymerization in conjunction with cell anchorage, the latter critically dependent upon a heparin-binding locus within LG module-4; (c) dystroglycan is not uniquely required for basement membrane assembly or initial differentiation; (d) dystroglycan and integrin cooperate to sustain survival of the epiblast and regulate laminin expression; and (e) laminin, acting via beta1-integrin through LG1-3 and requiring polymerization, can regulate dystroglycan expression.  相似文献   

6.
Extracellular matrix of lymphoid tissues in the chick   总被引:2,自引:0,他引:2  
We describe the immunohistochemical distribution of components of the extracellular matrix of the chick lymphoid system. In the thymus, basement membranes of epithelial cells bordering the lobules were intensely stained by laminin antibodies; fibronectin antibodies labeled the capsule and the septal matrix, and similar reactivity was seen with tropoelastin and gp 115 antibodies. No positivity was detected with any of the antibodies within the cortical parenchymal cells. Laminin was not detected in the medullary parenchyma, whereas fibronectin was present as coarse fibers. Tropoelastin and gp 115 appeared as a finer and more diffuse meshwork. In the bursa, laminin antibodies outlined the epithelial cells separating the cortex from the medulla. Fibronectin, tropoelastin, and gp 115 antibody stained the interfollicular septa and the cortical matrix, although to a different extent. Laminin was also detected in association with the interfollicular epithelium (IFE) basement membrane, whereas no staining was found underneath the follicle-associated epithelium (FAE). FAE cells not only lack a proper basement membrane but are also not separated from medullary lymphocytes by any of the other extracellular matrix components were investigated. Consequently, medullary lymphocytes are not sequestered, and can come easily into contact with antigens present in the intestinal lumen. All four antibodies stained the spleen capsule and spleen blood vessels, tropoelastin and gp 115 antibodies giving the strongest reactivity. A fine trabecular staining pattern was detected with gp 115 antibodies in the white pulp.  相似文献   

7.
The processes by which trophoblast cells invade and modify the walls of the uteroplacental arteries of macaques during the course of gestation were examined. Antibodies to cytokeratins were employed to identify trophoblast, anti-desmin antibody to identify smooth muscle, and antibodies to type IV collagen, laminin, and fibronectin to examine changes in extracellular matrix distribution in the arterial wall. During early gestation, endovascular trophoblast adhered to the arterial wall, often in an asymmetrical distribution. As trophoblast cells moved outwardly into the tunica media, the basement membrane underlying the endothelium was lost, as indicated by gaps in the layer when stained for type IV collagen and laminin. Trophoblast cells became sequestered in the vessel wall where they hypertrophied and became surrounded by a capsule containing type IV collagen and laminin. As the trophoblast cells became established in the vessel wall, the muscular layer of the artery became discontinuous. Throughout gestation it was common for trophoblast cells to invade the vessel intimal layer and share the lining of the artery with typical endothelial cells. This general disposition of endovascular and intramural trophoblast persisted into late gestation. In addition, and contrary to the results of earlier studies of macaques, we identified trophoblastic invasion and modification of myometrial segments of the uteroplacental arteries in later gestation. We also found evidence of interstitial trophoblast cells among the stromal cells of the endometrium, especially during early gestation.  相似文献   

8.
This study investigates the establishment of alternative cell fates during embryoid body differentiation when ES cells diverge into two epithelia simulating the pre-gastrulation endoderm and ectoderm. We report that endoderm differentiation and endoderm-specific gene expression, such as expression of laminin 1 subunits, is controlled by GATA6 induced by FGF. Subsequently, differentiation of the non-polar primitive ectoderm into columnar epithelium of the epiblast is induced by laminin 1. Using GATA6 transformed Lamc1-null endoderm-like cells, we demonstrate that laminin 1 exhibited by the basement membrane induces epiblast differentiation and cavitation by cell-to-matrix/matrix-to-cell interactions that are similar to the in vivo crosstalk in the early embryo. Pharmacological and dominant-negative inhibitors reveal that the cell shape change of epiblast differentiation requires ROCK, the Rho kinase. We also show that pluripotent ES cells display laminin receptors; hence, these stem cells may serve as target for columnar ectoderm differentiation. Laminin is not bound by endoderm derivatives; therefore, the sub-endodermal basement membrane is anchored selectively to the ectoderm, conveying polarity to its assembly and to the differentiation induced by it. Unique to these interactions is their flow through two cell layers connected by laminin 1 and their involvement in the differentiation of two epithelia from the same stem cell pool: one into endoderm controlled by FGF and GATA6; and the other into epiblast regulated by laminin 1 and Rho kinase.  相似文献   

9.
10.
Chicken gizzard extract contains a macromolecular glycoprotein that promotes neurite outgrowth of dissociated neurons from the ciliary ganglia of chick embryos. Using conventional purification procedures, the factor responsible for the neurite outgrowth (neurite outgrowth factor (NOF)) was purified about 2000-fold to an apparent single protein band (as judged by agarose-polyacrylamide gel electrophoresis). Twenty fmol/cm2 of the purified NOF bound to the culture well was sufficient to exert maximal neuritic response of cultured ciliary ganglia neurons from 8-day-old chick embryos. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that NOF migrated as a single polypeptide of 700 and 210 kDa under nonreducing and reducing conditions, respectively. NOF stained with periodic acid-Schiff reagent and had a sedimentation coefficient of 12 s, a Stokes radius of 114 A, and an isoelectric point of about 5.1. Gizzard NOF was trypsin-sensitive, but resistant to treatment with heparinase, beta-galactosidase, and neuraminidase. Antibody prepared against the purified NOF blocked NOF activity in a dose-dependent manner. The antibody did not inhibit the biological activity of mouse laminin, although it cross-reacted weakly with laminin. Immunohistochemical analysis showed that the antibody against NOF strongly stained the extracellular matrix of cells in thin sections of gizzard, skeletal muscle, heart, liver, and ciliary ganglion, and also the membrane and the cytoplasm of cultured gizzard muscle cells. The present data suggest that gizzard NOF is a novel extracellular matrix glycoprotein which has a role in neurite outgrowth promotion from peripheral neurons in vivo. Although unlikely, the possibility that the NOF is a chick laminin could not be excluded.  相似文献   

11.
Laminins are extracellular matrix glycoproteins that are involved in various cellular functions, including adhesion, proliferation, and differentiation. In this study, we examine the expression patterns and the cellular origins of the laminin alpha2, alpha4, and alpha5 chains in the developing mouse intestine and in in vitro mouse/chick or chick/mouse interspecies hybrid intestines. In situ hybridization and Northern blot analysis revealed that mRNA levels for all three laminin alpha chains are highest in the fetal intestine undergoing intense morphogenetic movements. Laminin alpha4 mRNA and polypeptide are associated with mesenchyme-derived cell populations such as endothelium and smooth muscle. In contrast, laminin alpha2 and alpha5 chains participate in the structural organization of the subepithelial basement membrane and, in the mature intestine, show a complementary pattern of expression. All three laminin alpha chains occur in the smooth muscle basement membrane, with a differential expression of laminin alpha5 chain in the circular and longitudinal smooth muscle layers. The cellular origin of laminin alpha2 and alpha5 chains found in the subepithelial cell basement membrane was studied by immunocytochemical analysis of mouse/chick or chick/mouse interspecies hybrid intestines at various stages of development using mouse-specific antibodies. Laminin alpha2 was found to be deposited into the basement membrane exclusively by mesenchymal cells, while the laminin alpha5 chain was deposited by both epithelial and mesenchymal cells in an apparently developmentally regulated pattern. We conclude that (1) multiple laminin alpha chains are expressed in the intestine, implying specific roles for individual laminin isoforms during intestinal development, and (2) reciprocal epithelial/mesenchymal interactions are essential for the formation of a structured subepithelial basement membrane.  相似文献   

12.
To study the effect of the flavonoid (+)-catechin on cell-matrix interactions two cell types with a different morphology on and adhesion to laminin were used. MO4 virally transformed fetal mouse cells adhere and spread when cultured on top of laminin-coated coverslips or on human amnion basement membrane. M5076 mouse reticulum cell sarcoma cells poorly adhere to these substrates and remain round. Both cell types are invasive in confronting cultures with embryonic chick heart fragments. (+)-Catechin binds to laminin in a pH-dependent way. Pretreatment of laminin-coated coverslips or amnion basement membrane with 0.5 mM (+)-catechin abrogates the effect of laminin on cell morphology and adhesion. MO4 cells do not adhere to the pretreated substrates and remain round, while M5076 cells now adhere and spread. (+)-Catechin inhibits the invasion of MO4 cells but not of M5076 cells into embryonic chick heart in vitro. We speculate that the anti-invasive activity of the flavonoid to MO4 cells is the result of its interference with MO4 cell adhesion to laminin. Invasion of M5076 cells does not imply adhesion to and spreading on laminin.  相似文献   

13.
The mechanisms of neural crest cell interaction with laminin were explored using a quantitative cell attachment assay. With increasing substratum concentrations, an increasing percentage of neural crest cells adhere to laminin. Cell adhesion at all substratum concentrations was inhibited by the CSAT antibody, which recognizes the chick beta 1 subunit of integrin, suggesting that beta 1-integrins mediate neural crest cell interactions with laminin. The HNK-1 antibody, which recognizes a carbohydrate epitope, inhibited neural crest cell attachment to laminin at low coating concentrations (greater than 1 microgram ml-1; Low-LM), but not at high coating concentration of laminin (10 micrograms ml-1; High-LM). Attachment to Low-LM occurred in the absence of divalent cations, whereas attachment to High-LM required greater than 0.1 mM Ca2+ or Mn2+. Neural crest cell adherence to the E8 fragment of laminin, derived from its long arm, was similar to that on intact laminin at high and low coating concentrations, suggesting that this fragment contains the neural crest cell binding site(s). The HNK-1 antibody recognizes a protein of 165,000 Mr which is also found in immunoprecipitates using antibodies against the beta 1 subunit of integrin and is likely to be an integrin alpha subunit or an integrin-associated protein. Our results suggest that the HNK-1 epitope on neural crest cells is present on or associated with a novel or differentially glycosylated form of beta 1-integrin, which recognizes laminin in the apparent absence of divalent cations. We conclude that neural crest cells have at least two functionally independent means of attachment to laminin which are revealed at different substratum concentrations and/or conformations of laminin.  相似文献   

14.
We investigated the remodeling of glucosamine-containing basement-membrane components in chimaeric avian embryos during gastrulation. Epiblast grafts metabolically labelled with tritiated glucosamine were excised from gastrulating quail embryos and implanted orthotopically into chicken embryos at the same developmental stage. The chimaerae were allowed to develop in culture for 5-7 h before autoradiographic processing. The resulting autoradiographs not only showed the presence of silver grains in the grafted quail tissue and at the level of its basement membrane, but also revealed labelling in the basement-membrane region of the chicken tissue lateral to the graft, i.e. between the mesoblast and epiblast. This last labelling extended as far as at the edge of the area pellucida, i.e. in a region of chicken tissue situated more laterally than the initial position of the graft. No labelling was observed medial, anterior, or posterior to the graft. This observation argues against the interpretation that our results were due to diffusion of labelled compounds within the basement membrane. We also provide evidence to exclude the possibility that quail epiblast cells migrated on their own underlying basement membrane, leaving behind a carpet of labelled material. Taking into account, firstly, the morphogenetic movements that occur during gastrulation, i.e. the movement of epiblast cells towards the primitive streak where they ingress, and the migration of mesoblast cells along the basement membrane towards the periphery of the area pellucida, and secondly, the medial movement of the basement membrane, it is suggested that mesoblast cells picked up labelled compounds in the basement membrane of the graft and left these behind during their lateral migration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have previously characterized monoclonal antibodies against chick brain cells. One of them (14-2B2) brightly stained all capillaries in frozen sections of chick brain. Here we show that this antibody is directed against chick fibronectin. Using this antibody and polyclonal antibodies against laminin, we have studied the development of the vascular extracellular matrix. Vasculogenesis, the development of capillaries from in situ differentiating endothelial cells, was studied in yolk sac blood islands and intraembryonic dorsal aorta. Blood islands produced high levels of fibronectin but not laminin. Early intraembryonic capillaries all expressed fibronectin but little if any laminin. The dorsal aorta of a 6-day-old chick embryo has several layers of fibronectin-producing cells, but is devoid of laminin. Laminin expression commenced at Day 8 and by Day 10 an adult-like distribution was found in the aortic vascular wall. Angiogenesis, the formation of capillaries from preexisting vessels, was studied during brain development. Capillary sprouts invading the neuroectoderm at Embryonic Day 4 migrated in a fibronectin-rich matrix devoid of laminin. Ultrastructural immunolocalization demonstrated the presence of fibronectin exclusively on the abluminal site of the endothelial cells. Beginning on Day 6, laminin codistributed with fibronectin in brain capillaries. We conclude that immature capillaries migrate and proliferate in a fibronectin-rich extracellular matrix, which is subsequently remodeled acquiring basement membrane-like characteristics. We suggest that laminin expression is an early indication of vascular maturation.  相似文献   

16.
We have used the method of radial caseinolysis in agarose to assay for the presence of plasminogen activator in the primitive streak cells of the early chick embryo. These cells are undergoing an epithelial-mesenchymal transformation in the process of the differentiation of mesoderm cells from the ectoderm. In the primitive streak, the epithelial cells, after penetrating the basement membrane, ingress and invade the underlying tissue space as fibroblast-like mesenchyme cells. In contrast to some other early embryonic invasionary and migratory events, we find no evidence for the participation of plasminogen activator in this process.  相似文献   

17.
The histogenesis of renal basement membranes was studied in grafts of avascular, 11-day-old mouse embryonic kidney rudiments grown on chick chorioallantoic membrane (CAM). Vessels of the chick CAM invade the mouse tissue during an incubation period of 7-10 days and eventually hybrid glomeruli composed of mouse epithelium and chick endothelium form. Formation of basement membranes during this development was followed by immunofluorescence and immunoperoxidase stainings using polyclonal and monoclonal antibodies against mouse and chick collagen type IV and against mouse laminin. These antibodies were species-specific as shown in immunochemical and immunohistologic analyses. The glomerular basement membrane contained both mouse and chick collagen type IV, demonstrating its dual cellular origin. All other basement membranes were either exclusively of chick origin (mesangium, vessels) or of mouse origin (tubuli, Bowman's capsule).  相似文献   

18.
Epithelial cell organization into multicellular structures is a critical biological process required for both organogenesis and repair following injury. The basement membrane and the cytoskeleton have important roles in this process; however, the functions of individual components of basement membrane and cytoskeleton are poorly understood. We used IEC-6 cells, a rat intestinal crypt cell line, grown on a three-dimensional gel of reconstituted basement membrane as a model system to determine which extracellular matrix and cytoskeletal components mediate intestinal epithelial cell organization. The cells entered the gel and formed hollow, tubular structures that resembled intestinal crypts. These structures were characterized by a single layer of polarized cells with apical tight junctions and microvilli on the luminal surface. Antiserum to laminin and the pentapeptide Tyr-Ile-Gly-Ser-Arg (which prevents cell attachment to laminin) inhibited this organization, but a control pentapeptide (Tyr-Tyr-Gly-Asp-Ala) and antiserum to collagen IV did not. Cytochalasin B, which interferes with actin microfilament polymerization, also inhibited organization of cells into multicellular structures, but vinblastine and Colcemid, which disrupt microtubules, and cycloheximide, which inhibits protein synthesis, did not. We conclude that organization of intestinal epithelial cells on a basement membrane into multicellular structures results from specific interactions between cells and laminin and requires intact actin microfilaments.  相似文献   

19.
The abilities of malignant tumor cells to bind and migrate through basement membranes are important steps in invasion and metastasis. Malignant tumor cells would therefore be expected to express receptors on their surfaces for basement membrane and stromal components, such as collagens, laminin, and fibronectin, although the pattern of expression of these receptors on the malignant cells may be different from that on their normal progenitors. We report here that chemically transformed tumorigenic human cells express an altered pattern of integrin receptors on their cell surfaces as compared with their untransformed nontumorigenic counterparts. Specifically, N-methyl-N'-nitro-N-nitrosoguanidine transformation of HOS cells into highly tumorigenic cells results in a significant specific increase in the expression of (in descending order of level of cell surface expression) the integrins alpha 6/beta 1, alpha 2/beta 1, and alpha 1/beta 1, which are receptors for laminin, collagens, and collagen type IV and laminin, respectively. The level of expression of two fibronectin receptor integrins, alpha 5/beta 1 and alpha 3/beta 1, are, however, unaltered, whereas the level of expression of vitronectin receptor integrin, alpha v/beta 3, is drastically reduced on the transformed cells. Consistent with the increased expression of laminin and collagen receptors and the decreased expression of vitronectin receptors on the transformed cells, these cells attached three- to fivefold more strongly to laminin and collagen but attached very poorly to vitronectin. The MNNG-HOS cells were also found to have a greater potential for invasion through reconstituted basement membrane, matrigel, the major components of which are laminin and type IV collagen. The invasion of both the HOS and MNNG-HOS cells was inhibited 45-50% by a polyclonal anti-fibronectin receptor antibody. However, although the invasion of HOS cells could be inhibited up to 75% by an anti-alpha 6 monoclonal antibody, a similar concentration of this antibody had no effect on the alpha 6-overproducing MNNG-HOS cells. A fivefold higher concentration of this antibody did result in partial inhibition of MNNG-HOS invasion. These data indicate a critical role for the alpha 6/beta 1 laminin receptor in the invasion of these cells through basement membranes and demonstrate that chemical transformation of nontumorigenic human cells to highly tumorigenic cells is associated with an altered pattern of integrin expression which may play a direct role in the increased capacity of these cells to bind and invade through basement membranes.  相似文献   

20.
Basement membranes have a critical role in alveolar structure and function. Alveolar type II cells make basement membrane constituents, including laminin, but relatively little is known about the production of basement membrane proteins by murine alveolar type II cells and a convenient system is not available to study basement membrane production by murine alveolar type II cells. To facilitate study of basement membrane production, with particular focus on laminin chains, we examined transformed murine distal respiratory epithelial cells (MLE-15), which have many structural and biochemical features of alveolar type II cells. We found that MLE-15 cells produce laminin-alpha5, a trace amount of laminin-alpha3, laminins-beta1 and -gamma1, type IV collagen, and perlecan. Transforming growth factor-beta1 significantly induces expression of laminin-alpha1. When grown on a fibroblast-embedded collagen gel, MLE-15 cells assemble a basement membrane-like layer containing laminin-alpha5. These findings indicate that MLE-15 cells will be useful in modeling basement membrane production and assembly by alveolar type II cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号