首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the awareness of potential radiation damage of metal centers in protein crystals during crystallographic data collection has received increasing attention. The radiation damage can lead to radiation-induced changes and reduction of the metal sites. One of the research fields where these concerns have been comprehensively addressed is the study of the reaction intermediates of the heme peroxidase and oxygenase reaction cycles. For both the resting states and the high-valent intermediates, the X-rays used in the structure determination have given undesired side effects through radiation-induced changes to the trapped intermediates. However, X-rays have been used to generate and trap the peroxy/hydroperoxy state in crystals. In this review, the structural work and the influence of X-rays on these intermediates in myoglobin are summarized and viewed in light of analogous studies on similar intermediates in peroxidases and oxygenases.  相似文献   

2.
Peroxidases, oxygenases and catalases have similar high-valent metal-ion intermediates in their respective reaction cycles. In this review, haem-based examples will be discussed. The intermediates of the haem-containing enzymes have been extensively studied for many years by different spectroscopic methods like UV-Vis, EPR (electron paramagnetic resonance), resonance Raman, M?ssbauer and MCD (magnetic circular dichroism). The first crystal structure of one of these high-valent intermediates was on cytochrome c peroxidase in 1987. Since then, structures have appeared for catalases in 1996, 2002, 2003, putatively for cytochrome P450 in 2000, for myoglobin in 2002, for horseradish peroxidase in 2002 and for cytochrome c peroxidase again in 1994 and 2003. This review will focus on the most recent structural investigations for the different intermediates of these proteins. The structures of these intermediates will also be viewed in light of quantum mechanical (QM) calculations on haem models. In particular quantum refinement, which is a combination of QM calculations and crystallography, will be discussed. Only small structural changes accompany the generation of these intermediates. The crystal structures show that the compound I state, with a so called pi-cation radical on the haem group, has a relatively short iron-oxygen bond (1.67-1.76A) in agreement with a double-bond character, while the compound II state or the compound I state with a radical on an amino acid residue have a relatively long iron-oxygen bond (1.86-1.92A) in agreement with a single-bond character where the oxygen-atom is protonated.  相似文献   

3.
Hemoglobin is a regulatory component of the oxygen transport to the tissues, and for decades has been a prototype to develop new strategies for the study of the structure/function relationships in proteins. One of the most difficult, and so far, unattained objectives of hemoglobin research has been the study of the hemoglobin molecules in a state of partial ligation with oxygen, or intermediates, as a means of testing theories of cooperativity. A cryogenic technique has been developed for the isolation, identification and quantification of the reaction intermediates of hemoglobin and CO, which in many aspects is a close approximation to the physiological ligand. The technical features that are crucial for the evaluation of the significance of the experimental data obtained using this technique and various approaches to the analysis of the data are reported. The discussion points out the importance of accessing direct information on the nature and concentrations of the intermediates in solution to clarify mechanisms of cooperativity as opposed to the less informative studies of the bulk properties of the solution.  相似文献   

4.
A study of the reactions of an NADH model, 1,4-di(trimethylsilyl)-1,4-dihydropyridine, 7, with a series of α,β-unsaturated cyano and carbonyl compounds has produced the first direct evidence for an obligatory covalent adduct between a dihydropyridine and substrate in a reduction reaction. The reactions were monitored by NMR spectroscopy. In all reactions studied, the covalent adduct was the first new species detected and its decomposition to form products could be observed. Concentrations of adducts were sufficiently high at steady-state that their structures could be determined directly from NMR spectra of the reaction mixtures; adduct structures are those expected from an Ene reaction between 7 and the substrate. This first reaction step results in transfer of the C(4) hydrogen nucleus of 7 to the substrate and formation of a covalent bond between C(2) of the dihydropyridine ring and the substrate α-atom. Discovery of these Ene-adduct intermediates completes the spectrum of mechanisms observed in NADH model reactions to span those with free radical intermediates, no detectable intermediates and now covalent intermediates. The geometry of the transition state for formation of the Ene adduct is compared with those of theoretical transition state models and crystal structures of enzyme-substrate/inhibitor complexes to suggest a relative orientation for the dihydropyridine ring and the substrate in an initial cyclic transition state that is flexible enough to accommodate all observed mechanistic outcomes.  相似文献   

5.
The measurement of amino acid-resolved hydrogen exchange (HX) has provided the most detailed information so far available on the structure and properties of protein folding intermediates. Direct HX measurements can define the structure of tenuous molten globule forms that are generally inaccessible to the usual crystallographic and NMR methods (C. Redfield review in this issue). HX pulse labeling methods can specify the structure, stability and kinetics of folding intermediates that exist for less than 1 s during kinetic folding. Native state HX methods can detect and characterize folding intermediates that exist as infinitesimally populated high energy excited state forms under native conditions. The results obtained in these ways suggest principles that appear to explain the properties of partially folded intermediates and how they are organized into folding pathways. The application of these methods is detailed here.  相似文献   

6.
The reaction of Old Yellow Enzyme (OYE) with pyridine nucleotides has been examined using steady state kinetics, rapid reaction kinetics, and equilibrium binding. alpha-NADPH, beta-NADPH, and the acid breakdown products of NADPH all bind to oxidized OYE with dissociation constants below 1 microM. These complexes produce characteristic red shifts in the absorption spectrum of OYE. A similar red shift which occurs after multiple turnovers of OYE with NADPH has been found to be due to an impurity in the NADPH preparation, possibly an acid breakdown product. Anions such as chloride, acetate, azide, and phenolates compete with the pyridine nucleotides for binding to a common site in oxidized OYE. Anaerobic reduction of OYE by NADPH proceeds via two intermediates to establish a readily reversible equilibrium. In contrast to most other NADPH-dependent enzymes, both alpha- and beta-NADPH are capable of reducing OYE, and alpha-NADPH is more effective. Using beta-[4(R)-2H]NADPH, a primary deuterium isotope effect was observed in the reduction reaction. Results from rapid reaction and steady state studies showed that reduction of OYE was rate limiting in turnover. Consistent with this, the turnover number with alpha-NADPH was significantly higher than that with beta-NADPH.  相似文献   

7.
57Fe-Mössbauer spectroscopy is a method that probes transitions between the nuclear ground state (I = 1/2) and the first nuclear excited state (I = 3/2). This technique provides detailed information about the chemical environment and electronic structure of iron. Therefore, it has played an important role in studies of the numerous iron-containing proteins and enzymes. In conjunction with the freeze-quench method, 57Fe-Mössbauer spectroscopy allows for monitoring changes of the iron site(s) during a biochemical reaction. This approach is particularly powerful for detection and characterization of reactive intermediates. Comparison of experimentally determined Mössbauer parameters to those predicted by density functional theory for hypothetical model structures can then provide detailed insight into the structures of reactive intermediates. We have recently used this methodology to study the reactions of various mononuclear non-heme-iron enzymes by trapping and characterizing several Fe(IV)-oxo reaction intermediates. In this article, we summarize these findings and demonstrate the potential of the method.  相似文献   

8.
The reaction of mixed-valence state membrane-bound cytochrome oxidase with oxygen has been studied by difference spectroscopy with reference to the unliganded state and by the low temperature technique of Chance and coworkers. Three intermediates, compound A2 and two compound C-type components denoted C606 and C610, have been resolved in time and wavelength in the alpha region. Their optical properties are defined in the visible range. Compound A2 disappearance and compound C606 formation exhibit first-order kinetics with identical rate constants: 2.4 . 10(-3) s-1 at -94 degrees C. Compound A2 has its alpha band maximum at 590 nm and shares an isosbestic point at 595 nm with the C606 species. The alpha band of this intermediate peaks at 606 nm. Compound C610 is the real end point of the reaction and its alpha band maximum appears at 610 nm. Compound C606 is interpreted as resulting from the transfer of one electron from heme alpha 3 copper to oxygen and compound C610 as expressing a molecular reorganization due to the effect of the temperature. Structural requirements for the location of CuB in the active site are discussed. It is concluded that the three observed compounds are the only intermediates formed in the reaction between oxygen and mixed-valence state membrane-bound cytochrome oxidase.  相似文献   

9.
The transport cycle of ABC transporters in general and P-glycoprotein in particular has been extensively studied, but the molecular mechanism remains controversial. We identify stable reaction intermediates in the progression of the P-glycoprotein-mediated ATPase reaction equivalent to the enzyme-substrate (E.S, P-glycoprotein.ATP) and enzyme-product (E.P, P-glycoprotein.ADP.P(i)) reaction intermediates. These have been characterized using the photoaffinity analog 8-azido-[alpha-32P]ATP as well as under equilibrium conditions using [alpha-32P]ATP, in which a cross-linking step is not involved. Similar results were obtained when 8-azido-[alpha-32P]ATP or [alpha-32P]ATP was used. The reaction intermediates were characterized based on their kinetic properties and the nature (triphosphate/diphosphate) of the trapped nucleotide. Using this defined framework and the Walker B E556Q/E1201Q mutant that traps nucleotide in the absence of vanadate or beryllium fluoride, the high to low affinity switch in the transport substrate binding site can be attributed to the formation of the E.S reaction intermediate of the ATPase reaction. Importantly, the posthydrolysis E.P state continues to have low affinity for substrate, suggesting that conformational changes that form the E.S complex are coupled to the conformational change at the transport substrate site to do mechanical work. Thus, the formation of E.S reaction intermediate during a single turnover of the catalytic cycle appears to provide the initial power stroke for movement of drug substrate from inner leaflet to outer leaflet of lipid bilayer. This novel approach applies transition state theory to elucidate the mechanism of P-glycoprotein and other ABC transporters and has wider applications in testing cause-effect hypotheses in coupled systems.  相似文献   

10.
The peroxidase-oxidase reaction is known to involve reactive oxygen species as intermediates. These intermediates inactivate many types of biomolecules, including peroxidase itself. Previously, we have shown that oscillatory dynamics in the peroxidase-oxidase reaction seem to protect the enzyme from inactivation. It was suggested that this is due to a lower average concentration of reactive oxygen species in the oscillatory state compared to the steady state. Here, we studied the peroxidase-oxidase reaction with either 4-hydroxybenzoic acid or melatonin as cofactors. We show that the protective effect of oscillatory dynamics is present in both cases. We also found that the enzyme degradation depends on the concentration of the cofactor and on the pH of the reaction mixture. We simulated the oscillatory behaviour, including the oscillation/steady state bistability observed experimentally, using a detailed reaction scheme. The computational results confirm the hypothesis that protection is due to lower average concentrations of superoxide radical during oscillations. They also show that the shape of the oscillations changes with increasing cofactor concentration resulting in a further decrease in the average concentration of radicals. We therefore hypothesize that the protective effect of oscillatory dynamics is a general effect in this system.  相似文献   

11.
The molecular chaperones GroEL and GroES facilitate protein folding in an ATP-dependent manner under conditions where no spontaneous folding occurs. It has remained unknown whether GroE achieves this by a passive sequestration of protein inside the GroE cavity or by changing the folding pathway of a protein. Here we used citrate synthase, a well studied model substrate, to discriminate between these possibilities. We demonstrate that GroE maintains unfolding intermediates in a state that allows productive folding under nonpermissive conditions. During encapsulation of non-native protein inside GroEL.GroES complexes, a folding reaction takes place, generating association-competent monomeric intermediates that are no longer recognized by GroEL. Thus, GroE shifts folding intermediates to a productive folding pathway under heat shock conditions where even the native protein unfolds in the absence of GroE.  相似文献   

12.
The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.  相似文献   

13.
Mass spectrometry offers a potential means of measuring virtually all enzyme-catalyzed reactions by simultaneously measuring the concentrations of substrates, products, and intermediates where there are differences in mass between them. To perform these measurements the reaction mixture must be aged for different times and then ionized. Electrospray ionization mass spectrometry provides the most direct means of measuring these reactions. Here we describe a simple reaction mixing and ageing attachment for an electrospray ionization mass spectrometer, built from commercially available components. We have employed this device to measure the kinetics of a model reaction, namely the hydrolysis of N2-(carbobenzyloxy)-L-lysine-p-nitrophenyl ester-catalyzed by trypsin. In this way we were able to measure the kinetics of substrate depletion, product formation, and changes in both free enzyme and acyl-enzyme intermediate concentration in the approach to steady state. With this device we were able to measure reaction times down to about 640 ms.  相似文献   

14.
The redox state of two SH-groups per enzyme subunit has been shown to control the cooperative properties of alpha-ketoglutarate dehydrogenase. These thiols oxidized, alpha-ketoglutarate dehydrogenase does not exhibit any cooperative properties. The enzyme reduction leads to subunit interactions. It has been found that the most effective agent reducing the alpha-ketoglutarate dehydrogenase thiols essential for the cooperativity is dihydrolipoate, one of the intermediates of the overall alpha-ketoglutarate dehydrogenase reaction. The possibility of changing the properties of alpha-ketoglutarate dehydrogenase in the multienzyme complex under the conditions when the lipoic acid integrated into the complex is reduced, has been investigated. Thus, incubation of the alpha-ketoglutarate dehydrogenase complex with NADH has been found to induce the conversion from the non-cooperative form to the cooperative one, presumably through the reduction of lipoic acid bound to the complex in the reaction catalyzed by lipoyl dehydrogenase, the third component of the complex.  相似文献   

15.
Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, α-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.  相似文献   

16.
The light-induced processes of the biological photoreceptor phytochrome (recombinant phyA of oat and recombinant CphA from the cyanobacterium Tolypothrix PCC7601) have been investigated in a time-resolved manner in the temperature range from 0 to 30°C. Both proteins were heterologously expressed and assembled in vitro with phycocyanobilin. The Pr state of plant phytochrome phyA is converted to the Pfr state after formation of four intermediates with an overall quantum yield of ∼18%. The reversal reaction (Pfr-to-Pr) shows several intermediates, all of which, even the first detectable one, exhibit already all spectral features of the Pr state. The canonical phytochrome CphA from Tolypothrix showed a similar intermediate sequence as its plant ortholog. Whereas the kinetics for the forward reaction (Pr-to-Pfr) was nearly identical for both proteins, the reverse process (Pr formation) in the cyanobacterial phytochrome was slower by a factor of three. As found for the Pfr-to-Pr intermediates in the plant protein, also in CphA all detectable intermediates showed the spectral features of the Pr form. For both phytochromes, activation parameters for both the forward and the backward reaction pathways were determined.  相似文献   

17.
The kinetics of oxidation of some aldoses by vanadium(V) in perchloric acid media have been investigated. Each reaction is first order with respect to both [Vanadium(V)] and [Aldose]. The reactions are catalysed by acid. The addition of sodium perchlorate accelerates the rate of reaction. Kinetic evidence for the formation of an intermediate compound between vanadium(V) and aldoses is insignificant, and a mechanism is suggested in which vanadium(V) reacts with the aldoses by a fast step to form a transition state, followed by the decomposition of the latter to give the products of reaction in a slow step. The formation of free-radical intermediates has been demonstrated, and one-electron reduction of vanadium(V) by aldoses seems to be the most plausible mechanism. The oxidation rates follow the order: xyloses arabinose galactose mannose. The activation parameters are reported.  相似文献   

18.
Chu R  Pei W  Takei J  Bai Y 《Biochemistry》2002,41(25):7998-8003
The hydrogen exchange behavior of a four-helix bundle protein in low concentrations of denaturant reveals some partially unfolded forms that are significantly more stable than the fully unfolded state. Kinetic folding of the protein, however, is apparently two-state in the absence of the accumulation of early folding intermediates. The partially unfolded forms are either as folded as or more folded than the rate-limiting transition state and appear to represent the major intermediates in a folding and unfolding reaction. These results are consistent with the suggestion that partially unfolded intermediates may form after the rate-limiting step for small proteins with apparent two-state folding kinetics.  相似文献   

19.
Spirochetes of the genus Borrelia include the causative agents of Lyme disease and relapsing fever. These bacteria have a highly segmented genome where most replicons are linear molecules terminated by covalently closed hairpin telomeres. Moreover, these genomes appear to be in a state of flux with extensive and ongoing DNA rearrangements by unknown mechanisms. The B. burgdorferi telomere resolvase ResT generates the hairpin telomeres from replication intermediates in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases and tyrosine recombinases. We report here the unexpected ability of ResT to catalyze the fusion of hairpin telomeres in a reversal of the telomere resolution reaction. We propose that stabilized ResT-mediated telomere fusions are an underlying force for maintaining the B. burgdorferi genome in a state of flux.  相似文献   

20.
The oxidative refolding of hen lysozyme has been studied by a variety of time-resolved biophysical methods in conjunction with analysis of folding intermediates using reverse-phase HPLC. In order to achieve this, refolding conditions were designed to reduce aggregation during the early stages of the folding reaction. A complex ensemble of relatively unstructured intermediates with on average two disulfide bonds is formed rapidly from the fully reduced protein after initiation of folding. Following structural collapse, the majority of molecules slowly form the four-disulfide-containing fully native protein via rearrangement of a highly native-like, kinetically trapped intermediate, des-[76-94], although a significant population (approximately 30%) appears to fold more quickly via other three-disulfide intermediates. The folding catalyst PDI increases dramatically both yields and rates of lysozyme refolding, largely by facilitating the conversion of des-[76-94] to the native state. This suggests that acceleration of the folding rate may be an important factor in avoiding aggregation in the intracellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号