首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

1. 1. We compared the functions of POS system scanners by measuring electromyograms and joint angles during scanning in this paper.

2. 2. We have demonstrated that the space scanner is physically easy to use, movement of the wrist is natural and easy, the most suitable method for scanning perishable foods which spill easily or are fragile.

3. 3. A space scanner can be used with a bar code.

4. 4. Electromyograms were taken from M. deltoideus, M. biceps brachii, M. extensor carpi radialis longus and brevis, M. flexor carpi ulnaris muscles.

Author Keywords: POS system; EMG; electrogoniometer  相似文献   


2.
We investigated the muscle activation pattern of the lower limbs for the stopping motion of baseball batting by recording surface electromyography (EMG) from 8 muscles, the left and right rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG) muscles. First, muscle activities for 'Swing' and 'Stopping' trials were examined in 10 skilled baseball players and 10 unskilled novices. Second, the characteristics of EMG activities for 'Stopping' were compared between the 2 groups. The peak latencies of EMG were significantly shorter in 'Stopping' than in 'Swing' at the right-TA, left-BF, and left-MG between both groups. The peak amplitudes of EMG activity were significantly larger in 'Swing' than in 'Stopping' at the right-TA, left-BF, and left-MG in both groups. In addition, the peak amplitudes of EMG activity for 'Stopping' were significantly larger in the players than in novices at the right-RF and right-TA. The characteristics of EMG activity clearly differed between 'Swing' and 'Stopping,' and between baseball players and nonplayers, indicating that evaluating the EMG activity in batting enables the understanding of proficiency. Our findings should help players, novices, and coaches to optimize batting performance.  相似文献   

3.
Chair-seat height affects the burden on the lower-limbs during sit-to-stand (STS) movement. Previous studies used the same height chair, attaching importance to practicability, but the difference in each subject's lower thigh length may relate to the burden on the lower-limbs. This study aimed to examine the influence of different lower thigh lengths on floor reaction force and lower-limb strength during an STS movement. Thirty young-adult male subjects participated in this study (age: 22.7+/-2.6 yr, height: 172.8+/-4.8 cm, body-mass: 66.3+/-5.2 kg). The subjects were divided into three groups (G1>42 cm, 42 cm > or =G2 > or =38 cm, 38 cm >G3) based on lower thigh length (G1: 44.1+/-2.5 cm, G2: 39.8+/-1.3 cm, G3: 34.3+/-2.1 cm). Namely, G1 was characterized by lower thigh length longer than 105% of 40 cm, G2 by 95-105% of lower thigh length and G3 by lower thigh length less than 95% of 40 cm, respectively. Subjects performed an STS movement twice from chairs at 40 cm-height and height adjusted by the lower thigh length of each subject. Vertical floor reaction force and electromyogram (EMG) on the rectus femoris and tibialis anterior muscles during an STS movement were measured to evaluate the force of knocking over and the burden on the lower-limbs. Fifteen parameters regarding floor reaction force (10) and EMG (5) were selected for analyses. Significant differences were found in floor reaction force at hip-syneresis (F1) and the impulse between hip-syneresis and appearance of the peak floor reaction force (F2). G1 was greater than G2 for the former, and G3 for the latter. Significant differences were found in active muscle mass of the tibialis anterior from the beginning of an STS movement to hip-syneresis (TE1) and peak active muscle level of the tibialis anterior (TE6). G1 was greater than G2 for the former, and G2 and G3 for the latter. It was suggested that when an STS movement is performed using a chair with the same height for each subject, the load imposed on the subject's leg at the time of an STS movement and the STS movement achievement strategy differed since chair seat height changes relatively by the difference in lower thigh length. Moreover, it is thought that the difference in these load conditions and movement strategies occurs when the chair seat height of a subject's lower thigh length is longer than 110%. When conducting the ability to achieve STS movement rating test, chair seat height considering each subject's lower thigh length may be needed.  相似文献   

4.
The purpose of this study was to determine if wearing rocker-bottom shoes with compliant midsoles (RB) influences muscle activity and metabolic cost of walking. Furthermore, we sought to determine if weight differences between shod conditions accounted for any potential change. Twenty-eight subjects (17 women, 11 men, age 22.8 ± 6.6 years; weight 72 ± 20 kg; height 170 ± 6.7 cm; percent body fat 23.0 ± 11.7) walked on a treadmill (0% grade) for 10 minutes at a self-selected speed plus 10% (1.3 ± 0.2 m·s) in each of the following laboratory-provided shoes: flat-bottomed shoe (W), flat-bottomed shoe weight-matched to RB (WM), and RB. Muscle activity of the right side biceps femoris (BF), rectus femoris (RF), gastrocnemius (GA), and tibalis anterior (TA) was recorded for 30 seconds at the beginning, middle, and ending of the 10-minute walk using an electromyography (EMG) system. The average (AVG) and root mean square (RMS) were calculated from full-wave rectified EMG data at each interval. The rate of oxygen consumption (V[Combining Dot Above]O2) was measured for 10 minutes during each condition. A 3 (shoe) × 3 (time) repeated-measures analysis of variance (ANOVA) was used to compare each EMG-dependent variable (AVG and RMS EMG of each muscle), and repeated measures ANOVA was used to test V[Combining Dot Above]O2. Muscle activity (for any muscle) was not influenced by the interaction of shoe and time (p > 0.05). The AVG and RMS for RF, BF, and GA, including V[Combining Dot Above]O2, were not different among shod conditions (W: 9.7 ± 0.6 ml·kg·min; WM: 10.0 ± 0.5 ml·kg·min; RB: 10.1 ± 0.5 ml·kg·min), whereas TA AVG and RMS were lower during RB (p < 0.05). It seems that there is no increase in muscle activity or metabolic cost while wearing RB beyond the flat-bottomed shoe despite there being the rocker-profile design and mass differences.  相似文献   

5.
This study investigated temporal patterns of EMG activity during self-initiated falls with different optic flow information ('gaze directions'). Onsets of EMG during the flight phase were monitored from five experienced volunteers that completed 72 landings in three gaze directions (downward, mid-range and horizontal) and six heights of fall (10-130 cm). EMG recordings were obtained from the right gastrocnemius, tibialis anterior, biceps femoris and rectus femoris muscles, and used to determine the latency of onset (L(o)) and the perceived time to contact (T(c)). Impacts at touchdown were also monitored using as estimates the major peak of the vertical ground reaction forces (F(max)) normalized to body mass, time to peak (T(max)), peak impulse (I(norm)) normalized to momentum, and rate of change of force (dF(max)/dt). Results showed that L(o) was longer as heights of fall increased, but remained within a narrow time-window at >50 cm landings. No significant differences in L(o) were observed when gaze direction was changed. The relationship between T(c) and flight time followed a linear trend regardless of gaze direction. Gaze direction did not significantly affect the landing impacts. In conclusion, availability of optic flow during landing does not play a major role in triggering the preparatory muscle actions in self-initiated falls. Once a structured landing plan has been acquired, the relevant muscles respond relative to the start of the fall.  相似文献   

6.
A pelvic position has been sought that optimizes abdominal muscle activation while diminishing hip flexor activation. Thus, the objective of the study was to investigate the effect of pelvic position and the Janda sit-up on trunk muscle activation. Sixteen male volunteers underwent electromyographic (EMG) testing of their abdominal and hip flexor muscles during a supine isometric double straight leg lift (DSLL) with the feet held approximately 5 cm above a board. The second exercise (Janda sit-up) was a sit-up action where participants simultaneously contracted the hamstrings and the abdominal musculature while holding an approximately 45 degrees angle at the knee. Root mean square surface electromyography was calculated for the Janda sit-up and DSLL under 3 pelvic positions: anterior, neutral, and posterior pelvic tilt. The selected muscles were the upper and lower rectus abdominis (URA, LRA), external obliques, lower abdominal stabilizers (LAS), rectus femoris, and biceps femoris. The Janda sit-up position demonstrated the highest URA and LRA activation and the lowest rectus femoris activation. The Janda sit-up and the posterior tilt were significantly greater (p < 0.01 and p < 0.05, respectively) than the anterior tilt for the URA and LRA muscles. Activation levels of the URA and LRA in neutral pelvis were significantly (p < 0.01 and p < 0.05, respectively) less than the Janda sit-up position, but not significantly different from the posterior tilt. No significant differences in EMG activity were found for the external obliques or LAS. No rectus femoris differences were found in the 3 pelvis positions. The results of this study indicate that pelvic position had a significant effect on the activation of selected trunk and hip muscles during isometric exercise, and the activation of the biceps femoris during the Janda sit-up reduced the activation of the rectus femoris while producing high levels of activation of the URA and LRA.  相似文献   

7.
The purpose of the study was to evaluate the electromyographic (EMG) activity of muscles in curl-up exercises depending on the position of the upper and lower extremities. From the perspective of biomechanics, different positions of the extremities result in shifting the center of gravity and changing muscular loads in abdominal strength exercises. The subjects of the research were 3 healthy students (body mass 53-56 kg and height 163-165 cm) with no history of low back pain or abdominal surgery. Subjects completed 18 trials for each of the 9 exercises (static curl-up with 3 positions of the upper and 3 position of the lower extremities). The same experiment with the same subjects was conducted on the next day. The EMG activity of rectus abdominis (RA), erector spinae (ES), and quadriceps femoris-long head (rectus femoris [RF]) was examined during the exercises. The surface electrical activity was recorded for the right and left sides of each muscle. The raw data for each muscle were rectified and integrated. The statistical analysis showed that changing the position of upper extremities in the examined exercises affects the EMG activity of RA and ES but does not significantly affect the EMG activity of RF. Additionally, it was found that curl-up exercises with the upper extremities extended behind the head and the lower extremities flexed at 90° in the hip and knee joints involve RA with the greatest intensity, whereas curl-up exercises with the upper extremities extended along the trunk and the lower extremities flexed at 90° in the hip and knee joints involve RA with the lowest intensity.  相似文献   

8.
The purpose of this study was to examine the effectiveness of a commercial abdominal machine (Ab-Slide) and three common abdominal strengthening exercises (abdominal crunch, supine double leg thrust, and side bridge) on activating abdominal and minimizing extraneous (nonabdominal) musculature-namely, the rectus femoris muscle. We recruited 10 males and 12 females whose mean (+/- SD) percent body fat was 10.7 +/- 4 and 20.7% +/- 3.2%, respectively. Electromyographic (EMG) data were recorded using surface electrodes for the rectus abdominis, external oblique, internal oblique, and rectus femoris. We recorded peak EMG activity for each muscle during each of the four exercises and normalized the EMG values by maximum muscle contractions (% MVIC). A two-factor repeated-measures analysis of variance assessed differences in normalized EMG activity among the different exercise variations (p < 0.05). Post hoc analyses were performed using the Bonferroni-adjusted alpha to assess between-exercise pair comparisons (p < 0.002). Gender did not affect performance; hence, data were collapsed across gender. We found a muscle x exercise interaction (F9,189 = 5.2, p < 0.001). Post hoc analyses revealed six pairwise differences. The Ab-Slide elicited the greatest EMG activity for the abdominal muscles and the least for the rectus femoris. The supine double leg thrust could be a problem for patients with low-back pathology due to high rectus femoris muscle activity.  相似文献   

9.
The purpose of the present study was to define the degree of muscular activation while walking in water in order to aid rehabilitation therapists in their choice of exercises for daily clinical practice in aquatherapy. This study compares the electromyographic (EMG) activity of the rectus femoris, the soleus of the right lower limb and the contra-lateral lumbar erector spinae, during gait in water and on dry ground. The study was carried out on a group of seven healthy female subjects without past rachidian pathology. EMG recordings in water were taken with immersion to the umbilicus at "comfortable" speed. A total of five recordings were made at this speed, in water and on dry ground, with a one-minute rest between recordings. Integrated EMG results, averaged on eight gait cycles, show, for all the subjects, more erector spinae activity in water than on the ground (p<0.01). Soleus activity is greater during gait on dry ground for the whole group (p<0.01). For four subjects, the electromyographic (EMG) activity of the rectus femoris over the entire cycle is greater than that exhibited on dry ground.In the two experimental situations, no differences have been found either on amplitudinal peaks or on the shape of the patterns. The speed and gait cycle length are reduced in water (60% and 25%). Walking in water at an umbilical level increases the activity of the erector spinae and activates the rectus femoris to levels near to or higher than walking on dry ground.These data should be taken into account by the physiotherapist when designing a rehabilitation programme.  相似文献   

10.
The purpose of this study was to examine the co-activation of the rectus femoris (RF) and biceps femoris (BF) during drop jumping exercises using the co-contraction index (CI). Ten trained male long jumpers performed drop jumps from 20 cm (DJ20), 40 cm (DJ40) and 60 cm (DJ60) on a force platform. Surface electromyographic (EMG) activity of the RF and BF, vertical ground reaction force data and knee joint angular displacement and angular velocities were recorded and normalized as percentage of maximum isometric values. The CI was calculated for the pre-contact, braking and propulsive phases of the jump using four methods: (1) by dividing the double integrated antagonistic activity by the sum of the RF and BF EMG; (2) by finding the amount of overlap between the linear envelopes of the agonist and antagonist muscles and dividing by the number of data points; (3) by calculating the co-contraction at any instant point of time; and (4) by dividing the BF integrated activity by the total registered muscle activity around the knee. The CI ranged from 13.03+/-9.33 to 70.80+/-25.81%, depending on the estimation method used. A two-way analysis of variance (ANOVA) indicated that the CI was not affected by drop jumping height (p>0.05) while it was significantly higher (p<0.05) in the pre-contact phase compared to the braking and propulsion phases. The CI can be useful when examining muscle co-activation using EMG measurements in drop jumps. However, the conclusions on muscle co-activation depend on the equation used to estimate CI and therefore a commonly accepted method is necessary.  相似文献   

11.
To determine the non-uniform surface mechanical activity of human quadriceps muscle during fatiguing activity, surface mechanomyogram (MMG), or muscle sound, and surface electromyogram (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles of seven subjects during unilateral isometric knee extension exercise. Time- and frequency-domain analyses of MMG and of EMG fatigued by 50 repeated maximal voluntary contractions (MVC) for 3 s, with 3-s relaxation in between, were compared among the muscles. The mean MVC force fell to 49.5 (SEM 2.0)% at the end of the repeated MVC. Integrated EMG decreased in a similar manner in each muscle head, but a marked non-uniformity was found for the decline in integrated MMG (iMMG). The fall in iMMG was most prominent for RF, followed by VM and VL. Moreover, the median frequency of MMG and the relative decrease in that of EMG in RF were significantly greater (P < 0.05) than those recorded for VL and VM. These results would suggest a divergence of mechanical activity within the quadriceps muscle during fatiguing activity by repeated MVC. Accepted: 19 January 1999  相似文献   

12.
本文目的在于用定量分析技术研究虚步练习的疲劳过程中表面肌电图振幅与频率的变化。 实验发现坚持虚步直至疲劳过程中,股直肌与股外肌的IEMG均出现增加,肌电图功率谱向低频转移,及MPF减少。 股直肌与股外肌相比,坚持虚步过程中股直肌的IEMG较股外肌增加更为明显,而MPF的变化股外肌较股直肌更为显著。 此外,还观察到股外肌与股直肌肌电活动的“迁移”,即开始时股外肌电活动较股直肌强(肌电活动比为6∶4),以后逐渐过渡到二者的肌电活动相等(5∶5)。 文中着重讨论了股直肌、股外肌肌电图变化不同的原因。我们认为这可能由于股外肌在完成虚步练习中较股直肌起着更大的作用。  相似文献   

13.
In this study we aimed to determine the reliability of the surface electromyography (EMG) of leg muscles during vertical jumping between two test sessions, held 2 weeks apart. Fifteen females performed three maximal vertical jumps with countermovement. The displacement of the body centre of mass (BCM), duration of propulsion phase (time), range of motion (ROM) and angular velocity of the knee and surface EMG of four leg muscles (rectus femoris, vastus medialis. biceps femoris and gastrocnemius) were recorded during the jumps. All variables were analysed throughout the propulsion and mid-propulsion phases. Intraclass correlation coefficients (ICC) for the rectus femoris, vastus medialis, biceps femoris and gastrocnemius were calculated to be 0.88, 0.70, 0.24 and 0.01, respectively. BCM, ROM and time values all indicated ICC values greater than 0.90, and the mean knee angular velocity was slightly lower, at 0.75. ICCs between displacement of the BCM and integrated EMG (IEMG) of the muscles studied were less than 0.50. The angular velocity of the knee did not correlate well with muscle activity. Factors that may have affected reliability were variations in the position of electrode replacement, skin resistance, cross-talk between muscles and jump mechanics. The results of this study suggest that while kinematic variables are reproducible over successive vertical jumps, the degree of repeatability of an IEMG signal is dependent upon the muscle studied.  相似文献   

14.
The purpose of this study was to determine whether there are kinematic and electromyographic (EMG) differences between men and women in how the knee is controlled during a single-legged drop landing in response to whole-body vibration (WBV). Forty-five healthy volunteers, 30 men (age 22 ± 3 years; weight 76.8 ± 8.8 kg; height 179.0 ± 6.8 cm) and 15 women (age 22 ± 3 years; weight 61.0 ± 7.7 kg; height 161.9 ± 7.2 cm) were recruited for this study. Knee angles, vertical ground reaction forces, and the time to stabilize the knee were assessed after single-legged drop landings from a 30-cm platform. Surface EMG data in rectus femoris (RF) and hamstrings (H) and knee and ankle accelerometry signals were also acquired. The participants performed 3 pretest landings, followed by a 3-minute recovery and then completed 1 minute of WBV (30 Hz to 4 mm). Before vibration, the female subjects had a significantly higher peak vertical force value, knee flexion angles, and greater H preactivity (EMG(RMS) 50 milliseconds before activation) than did the male subjects. In addition, although not significant, the medial-lateral (ML) acceleration in both knee and ankle was also higher in women. After WBV, no significant differences were found for any of the other variables. However, there was a decrease in the RF to H activation ratio during the precontact phase and an increase in the ratio during the postcontact phase just in women, which leads to a decrement in ML acceleration. The gender differences reported in knee stability in response to WBV underline the necessity to perform specific neuromuscular training programs based on WBV together with instruction of the proper technique, which can assist the clinician in the knee injury prevention.  相似文献   

15.
Work requiring extremely body flexion is strongly associated with a high incidence of musculoskeletal injuries often reported during adopting squatting. In this study, the influence of different lower seat heights on the muscular stress in squatting on a stool (SS) were examined in comparison with fully squatting (FS). Fourteen healthy Indonesian males were recruited in the experiment. Two-dimensional body kinematics, ground reaction force (GRF) and electromyography (EMG) data were collected as subjects performed forward movement under four squatting height conditions which were FS and SS at 10 cm, 15 cm and 20 cm seat height. The results demonstrated that the change from FS to SS primarily affected the segmental angular flexions and muscular activities in the upper and lower limbs. GRF data showed that the SS conditions delivered 24% body weight onto the seat. The change of FS to SS showed significantly decrease in muscular load of the rectus femoris and tibialis anterior. In contrast, the soleus and gastrocnemius increased the activities as the seat height increased. The type of task that required the hand to handle the object on the ground level affected the trunk to be more flexed as the seat height increased. The findings of this study suggest that the use of a lower seat stool of a proper height seems to be a sub-optimal solution considering the change of muscular load associated with the discomfort in a squatting posture.  相似文献   

16.
Knee flexion is a movement that initiates rising from a sitting position, which is a common therapeutic exercise for patients unable to ambulate. We investigated how voluntary isometric biceps femoris contraction affects motor evoked potential (MEP) amplitude following transcranial magnetic stimulation, background electromyographic (EMG) amplitude, and H-reflex amplitude in ipsilateral leg muscles. Subjects were seated on the edge of a bed with their hips and knees flexed at 90°, and the soles of their feet on the floor. MEP and background EMG were recorded from the tibialis anterior (TA) and soleus (SOL), and H reflexes from SOL of 30 volunteers. Background EMG and MEP also were recorded while voluntarily contracting tested muscles. Biceps femoris contraction increased MEP and background EMG for TA and SOL ( p < 0.01). Maximal background EMG and MEP increased with increasing voluntary contraction of tested muscles ( p < 0.005). Regression slope differed little between TA and SOL. Biceps femoris contraction facilitated MEP comparably for TA and SOL, while SOL background EMG exceeded that of TA ( p < 0.02). The relationship between MEP facilitation and background EMG changed to favor more efficient facilitation in TA ( p < 0.05), but not SOL ( p > 0.1). MEP recorded from TA and SOL with subthreshold stimuli using needle electrodes were more frequent with biceps femoris contraction ( p < 0.04). H-reflex amplitude of SOL decreased during biceps femoris contraction ( p < 0.001). We concluded that biceps femoris contraction affects leg muscle MEP, background EMG, and H reflexes differently.  相似文献   

17.
The aim of this study was to examine superficial quadriceps femoris (QF) EMG and torque at perceived voluntary contraction efforts. Thirty subjects (15 males, 15 females) performed 9, 5 s, sub-maximal contractions at prescribed levels of perceived voluntary effort at points 1-9 on an 11-point scale (0-10), in a random order. Surface electromyograms (EMG) of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles, as well as QF peak torque (PT), average torque (AT), and torque coefficient of variation (C.V.), were sampled. The raw EMG signals were full-wave rectified and integrated over the middle three s of each contraction. The sampled EMG signals, and PT and AT at each perceived exertion level were normalized to the average of three maximal voluntary contractions. The normalized EMG and torque values at each perceived exertion level were then compared to equivalent percent values (i.e., 10% at a perceived level of 1). The results demonstrated that at all perceived exertion levels, with the exception of the RF at a level of 2 which was equivalent to 20%, and the VL and RF muscles at a level 1 in which activation was greater than 10%, activation was significantly less than the equivalent percent value at each point on the scale. VM EMG was found to be less than the VL and RF from contraction levels 3-9. PT was shown to be less than the equivalent percent values at contraction levels 6-9. The AT was found to be lower than the expected percent value at perceived effort levels 2-9. Torque C.V. was not found to be different across the range of perceived effort. The major findings of this study suggested that humans over-estimate voluntary QF muscle torque when guided by perceptual sensations. It is also suggested that the produced EMG signals revealed a reliance on the VL muscle for knee extensor torque generation at sub-maximal levels.  相似文献   

18.
The roundhouse kick is a powerful attack in Taekwondo. Most athletes intently perform this kick for scoring in competition. Therefore, kinematic and kinetic analyzes of this kick were the topics of interest; however, they were separately investigated and rarely recorded for impact force. Our objectives were to investigate knee and ankle joint kinematics and electromyographic (EMG) activity of leg muscle and compare them between high-impact (HI) and low-impact (LO) kicks. Sixteen male black-belt Taekwondo athletes performed five roundhouse kicks at their maximal effort. Electrogoniometer sensors measured angular motions of ankle and knee joints. Surface EMG activities were recorded for tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris muscles. Based on maximal impact forces, the athletes were classified into HI and LO groups. All athletes in both groups showed greater activation of rectus femoris than other muscles. The HI group only showed significantly less plantarflexion angles than the LO group during preimpact and impact phases (P < 0.05). During the impact phase, the HI group demonstrated significantly greater biceps femoris activation than the LO group (P < 0.05). In conclusion, rectus femoris activation could predominantly contribute to the powerful roundhouse kicks. Moreover, high biceps femoris co-activation and optimal angle of ankle plantarflexion of about 35° could help achieve the high impact force.  相似文献   

19.
Electromyographic (EMG) muscle scanning measures 2-second samples of integrated muscle action potentials from individual neck and back muscles using a hand-held scanner with post-style surface electrodes separated by a fixed distance. This "scanning" technique is widely used to expeditiously assess muscle activity in the diagnosis of musculoskeletal disorders. In order to determine if the 2-second sample is sufficiently representative of electrical activity at a specific muscle site, the stability of the signal received by the hand-held scanner was measured bilaterally at six neck and back muscle sites over 40 seconds (20 2-second integration periods) in five seated subjects. Taking the overall average EMG activity as the "true" value, the mean number of 2-second integration periods required to achieve less than 5% standard error was calculated to be 1.47 for the 60 muscles tested. Only three sites required more than five integration periods. The validity of EMG scanning as a diagnostic tool is enhanced by longer integration periods.  相似文献   

20.
The effects of dynamic and intermittent isometric knee extension exercises on skeletal muscle blood flow and flow heterogeneity were studied in seven healthy endurance-trained men. Regional muscle blood flow was measured using positron emission tomography (PET) and an [(15)O]H(2)O tracer, and electromyographic (EMG) activity was recorded in the quadriceps femoris (QF) muscle during submaximal intermittent isometric and dynamic exercises. QF blood flow was 61% (P = 0.002) higher during dynamic exercise. Interestingly, flow heterogeneity was 13% (P = 0.024) lower during dynamic compared with intermittent isometric exercise. EMG activity was significantly higher (P < 0.001) during dynamic exercise, and the change in EMG activity from isometric to dynamic exercise was tightly related to the change in blood flow in the vastus lateralis muscle (r = 0.98, P < 0.001) but not in the rectus femoris muscle (r = -0.09, P = 0.942). In conclusion, dynamic exercise causes higher and less heterogeneous blood flow than intermittent isometric exercise at the same exercise intensity. These responses are, at least partly, related to the increased EMG activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号