首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微藻生物质制备燃料乙醇关键技术研究进展   总被引:1,自引:0,他引:1  
燃料乙醇作为一种优良的可再生液体燃料,其开发利用受到了人们的广泛关注。微藻是一种高光合、高产生物量的生物质资源,很多的藻体细胞中含有大量的淀粉、纤维素(Iα型)等多糖物质,是制备燃料乙醇的优良原料。发展利用微藻制备燃料乙醇技术工艺,对于缓解我国目前日益短缺的能源问题,减少温室气体排放和环境污染等具有很好的应用前景。综述了国内外利用微藻生物质制备燃料乙醇中所用到的关键技术、存在的问题以及今后的发展前景等。  相似文献   

2.
微藻制备生物燃料已成为近年来一个极为热门的话题。许多已发表的论文并没有考虑到规模和经济可行性的问题,因此要使微藻燃料为再生燃料做出有意义的贡献,那么就要考虑在大规模下进行低成本生产的可行性。本文论述了微藻培养目前的进展程度,以及藻类生物燃料生产的可扩展性。本文还强调优化生产,提高在经济和规模上的可行性是目前所必须解决的问题。  相似文献   

3.
近年来,微生物燃料电池已引起了广泛关注,它将低能量废水和木质纤维素生物质等有机废物转化为电能。在将来,微生物电能将成为一种重要的生物能源,因为微生物燃料电池提供了一种复合有机物和可再生生物能源中提取电能的可行性。人们研究了许多物质,以考察其是否能作为微生物电能转化的底物。这些物质包括人工的和天然废物,以及木质纤维素生物质。尽管现在微生物燃料电池提供的电流和功率较低,但是随着技术的发展和对微生物燃料电池系统的深入了解,微生物燃料电池转化的电流和电力将极大增加,从而向世人提供了一种可以将纤维素生物质和废水直接转化为有用能源的有效方法。本文介绍了迄今为止在微生物燃料电池中用到的各种反应底物,并对它们的应用效率和存在的不足进行了分析。  相似文献   

4.
微藻是当今代谢工程领域最具潜力的燃料生物质来源之一.其结构简单、基因可操作性强的特点使其可通过不同的代谢工程手段得到丰富多样的生物燃料和高价值产物.本文系统地总结了近年来国内外利用微藻在脂质、氢气、乙烯、醇类、脂肪醇和脂肪烃、糖类、萜类及其他高价值产物的生产中取得的进展,并通过介绍着眼于改变光合作用关键酶体或复合物以提升生物质产量的相关研究进展,分析了生物质合成代谢途径的改变对上游光合作用的潜在影响.结合系统生物学及生物信息学方法筛选高效的微藻株系,改变碳流方向以提升生物质的合成效率,实现高效地同源重组,提高外源基因在微藻内的表达效率是微藻代谢工程亟待解决的问题.本文在此基础上结合近年来各个交叉学科的发展趋势,提出了若干改良微藻代谢的新模式,以期对微藻代谢研究及后续的工程改造有所启示.  相似文献   

5.
利用微藻生产可再生能源研究概况   总被引:20,自引:2,他引:20  
能源是现代工业的支柱,是国民经济可持续发展的动力。生物质能源作为一种来源广泛的可再生能源,其开发利用不仅有助于缓解化石燃料日益枯竭给全球经济发展带来的危机,还可避免对环境的污染。微藻中很多种类富含油脂,可以用来生产生物柴油(脂肪酸甲酯);另一些藻类中含有极丰富的烃类物质,化学结构与矿物油相似,提取后可加工成汽油、柴油使用;在特定条件下,绿藻和蓝藻在光合作用的同时可以产生氢气。微藻易培养,生长快,单位面积生物量大,油、烃含量高,是一类重要的生物质能源,已引起各国政府、科学家和企业家的高度关注。文中概述了利用微藻生产油脂、烃类、氢气的研究现状,探讨了利用微藻生产可再生能源存在的问题和对策,并展望了我国微藻可再生能源研究开发的发展前景。  相似文献   

6.
代谢调控在微藻油脂积累中的作用   总被引:3,自引:0,他引:3  
矿物能源的无节制使用,引起了日益严重的环境问题.随着全球石油耗竭及其价格的上涨,大力发展生物质能源、寻求可再生性新能源,对经济的可持续发展、缓解能源压力、控制环境污染具有重要的战略意义.微藻以其生长周期短,含油量高而引起了人们的广泛关注.但由于对藻类脂肪代谢中的调节机制了解不多,以及微藻基因组研究的相对滞后,极大的限制了微藻生物质能源的大规模开发利用.随着现代生物技术的发展,通过基因工程、代谢工程的方法,调控微藻脂类代谢,提高藻类含油量和生物量已成为可能.该文综述了影响微藻生长和油脂积累的生理生态因素及其调控的研究进展,探讨了代谢调控在微藻油脂积累中的作用及其在生物质能开发中的应用前景.  相似文献   

7.
正人类在利用化石燃料的过程中会导致大量有害温室气体CO_2的排放,促进全球气候变暖。微藻可通过光合作用固定CO_2,同时大量的微藻生物质还能作为生物能源的原料[1],因此,越来越多的研究关注于微藻生物固碳以达到降低碳排放的目的。利用微藻光合作用进行CO_2固定是一种能量节约型和环境友好型技术手段[2]。在利用微藻进行CO_2生物固定以及生物燃料生产时,研究微藻的CO_2固定能力、CO_2对微藻的生长以及油脂积累的影响等都是十分重要的。国内外利用微藻进行生  相似文献   

8.
碳中和是指CO2"零排放",在一段时间内通过节能减排、增加碳汇等途径,抵消各类活动所产生的CO2的排放.微藻是含有叶绿素a的原生生物,可以利用太阳能通过浓缩机制(CCM)进行光合作用高效固定CO2、通过异养同化作用转化固定有机碳.微藻生物质可转化为生物燃料、生物材料及生物肥料等,实现对传统化石燃料、塑料及化肥等的替代....  相似文献   

9.
微藻生物炼制技术   总被引:2,自引:0,他引:2  
积极发展以生物质原料为基础的生物炼制产业,对于解决能源危机、改善能源结构具有重大意义。微藻作为一种重要的生物质资源,具有分布广、生物量大、光合效率高、环境适应性强、生长周期短和产量高等突出特点,是进行生物炼制的优良材料,它在生产微藻燃料、开发微藻生物制剂和提取生物活性物质等方面具有广阔的开发前景。综述了微藻的培养特点和功能,介绍了微藻生物炼制技术的内容和领域,并对其发展前景作出展望。  相似文献   

10.
微藻是指一些微观的单细胞群体,是最低等的、自养的释氧植物。它是低等植物中种类繁多、分布及其广泛的一个类群。无论是在海洋、淡水湖泊等水域,或在潮湿的土壤、树干等处,几乎在有光和潮湿的任何地方,微藻都能生存。若要大规模地利用藻类生物质来制取生物柴油,就必须保证有充分的藻类生物质。  相似文献   

11.
生物燃料发展概况   总被引:1,自引:0,他引:1  
近几年来,国际油价不断上涨,不可再生能源资源日益减少,石油能源危机即将来到。面对即将到来的能源危机,全世界都认识到必须采取开源节流的战略,即一方面节约能源,另一方面开发新能源。全球正在大力开发生物质能,太阳能、水能、风能和地热能等可再生能源并开始逐步替代矿物能源。其中,以生物质能发展最为迅速,将成为发展的重点。生物质能源的开发与利用主要包括两方面:生物质能源发电和制备生物液体燃料如生物乙醇,生物丁醇、生物柴油等。生物质液体燃料作为液体交通燃料的唯一可再生替代能源,得到了迅猛发展。[编者按]  相似文献   

12.
前言 资源短缺和环境污染问题已成为制约世界经济可持续发展的瓶颈.以可再生且环境友好的生物质资源替代化石资源已成为解决资源和环境问题的主要途径之一①,Henry R.Bungay②在1982年针对生物质资源开发与利用提出了生物炼制(Bio-Refinery)这一概念.美国国家可再生能源实验室(U.S.NREL)将生物炼制定义为将生物质原料转化为燃料、电热能和化学产品的生物质转化工艺与设备的集成.生物炼制的原料主要有:含纤维素的生物质和废弃物、谷类或玉米、青草、苜蓿、微藻等.其中微藻是一类在海洋、湖泊等水体中广泛分布的微型植物,能够利用光能固定CO2实现自养,其细胞中含有丰富的油脂、色素、蛋白质、维生素等成分.微藻生物炼制是以微藻为原料,生产各种化学品、燃料、生物基材料和食品等产品的工艺与设备的集成.  相似文献   

13.
微型藻类,简称微藻,是指那些在显微镜下才能辨别其形态的微小藻类,有2万多种,且是水体生态系统中的主要初级生产者,与陆地微生物相比,微藻具有如下特点:(1)微藻具有叶绿素等光合器官,是非常有效的生物系统,能十分有效地利用太阳能通过光合作用将H2O、CO2和无机盐转化为有机化合物。同时因其固定CO2可以减少温室效应;(2)微藻的繁殖一般是简单的分裂式繁殖,  相似文献   

14.
微藻储能物质(碳水化合物、脂类等)可以作为生物燃料和生物基化学品的可再生原料。非生物胁迫(高光强、高盐度、营养盐限制、重金属等)传统诱导微藻储能物质积累的方法影响微藻的生长,从而限制了储能物质的高效积累。植物激素作为化学信使协调植物细胞活动的一类小分子物质,可对微藻的生理代谢活动产生调控作用,包括促进微藻细胞分裂,增加胁迫耐受,提高光合作用效率,从而提高藻类生物量,增加油脂、叶绿素和蛋白质含量。本文中,笔者概述了近年来国内外利用外源添加植物激素结合非生物胁迫条件调控微藻储能物质积累的研究进展,探讨了植物激素对微藻储能物质积累的作用机制,并提出未来可能的研究方向。  相似文献   

15.
生物质能源是一种绿色的可以替代化石能源的一种可再生的能源。尽管高温分解生物质处于发展阶段,但在目前水平,高温裂解因其可以在氧存在下热分解将生物材料直接转化为固态,液态和气态能源产品而受到广泛关注。本文介绍了生物质的热裂解,包括慢速热裂解、快速热裂解、闪解、催化热裂解等过程,重点讨论了在各种生物质材料的热裂解过程中各种操作参数如温度和生物粒子大小等对生物燃料收率的影响。  相似文献   

16.
藻类胞外聚合物(extracellular polymeric substances, EPS)是一种复杂的高分子聚合物,主要由多糖、蛋白质等物质组成。由于EPS具有独特的结构、大的比表面积及含有大量官能团等物理-化学特性,使其在污水处理及微藻生物质的絮凝回收等方面都有着非常重要的作用。本文系统介绍了EPS的组成及特性,重点论述了影响藻类EPS产生的生物因素及非生物因素,如光照、营养盐、pH及温度等,并对EPS在污水处理及生物絮凝方面的应用进行了总结。对藻类EPS产生机制及机理的深入研究有望为微藻提供更广阔的应用前景。  相似文献   

17.
正微藻是一类个体较小、通常为单细胞或群体的,能够高效进行光合作用、将太阳能转化为可利用的化学能的水生低等植物,种类和数量非常庞大。作为一种"活细胞生物反应器",微藻有集"碳减排、新能源、大健康、水处理"于一体的独特优势。在能源领域,微藻有望成为继粮食作物生物乙醇、纤维素生物乙醇和陆生作物生物柴油之后第三代生物质能源的  相似文献   

18.
日本NPO法人地区振兴支援中心绿色地球环境研究所的相泽克则先生于2009年5月30日在早稻田大学西早稻田校园召开的第12届MarineBiotechnology学术会议上发表演讲.指出在考虑生产利用微藻类的生物燃料时.从CO2的平衡上看微藻类存在问题。  相似文献   

19.
随着经济的发展和人口的增加,环境污染和水资源短缺已经成为不可避免的全球性问题。基于微藻的废水处理技术不仅可以净化废水、解决环境污染问题,还可以利用废水中的营养元素合成生物质,现如今这种技术已经受到越来越多的关注。为了进一步提高废水处理效果、降低废水处理成本,有必要了解微藻去除废水中营养物质和污染物的机理,开发下游低成本收获技术,提升微藻高价值副产物的生产。本文综述了微藻去除碳、氮、磷、重金属、抗生素和有机物的机理和影响因素,总结了微藻的不同收获方式和微藻生物质在各个领域的应用。最后,分析了不同微藻共培养体系和微藻固定化技术的优缺点,并展望了微藻废水处理技术未来的发展方向。  相似文献   

20.
<正>美国能源部(DOE)于2017年9月10日宣布资助4个微藻项目,旨在提供高效的工具和技术,以提高微藻的生产力,降低生产微藻生物燃料和生物产品的成本,资助金额高达880万美元。技术目标包括在培殖性能以及工具包可用性方面有明显的改善。预计在2020年实现年均微藻生物质生产力至少达到18g(/m~2·d)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号