首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificities of acid proteinases from Aspergillus niger, Aspergillus saitoi, Rhizopus chinensis, Mucor miehei, Rhodotorula glutinis, and Cladosporium sp., and that of swine pepsin, were determined and compared with ability of the enzymes to activate trypsinogen. Various oligopeptides containing l-lysine, Z-Lys-X-Ala, Z-Lys-(Ala)m, Z-Lys-Leu-(Ala)2, and Z-(Ala)n-Lys-(Ala)3 (X = various amino acid residues, m = 1–4, n = 1–2) were used as substrates. Of the enzymes which are able to activate trypsinogen, most split these peptides at the peptide bond formed by the carbonyl group of l-lysine. For the peptides to be susceptible to the enzymes it was essential that the chain extended for two or three amino acid residues on the C-terminal side of the catalytic point, and that a bulky or hydrophobic amino acid residue formed the imino-side of the splitting point. The rate of hydrolysis was markedly accelerated by elongation of the peptide chain with l-alanine on the N-terminal side of the catalytic point. Thus, of the substrates used, Z-(Ala)2-Lys-(Ala)3 was the most susceptible to the microbial acid proteinases possessing trypsinogen activating ability. On the other hand, M. miehei enzyme and pepsin, which do not activate trypsinogen, showed very little peptidase activity on the peptides.  相似文献   

2.
To investigate the effect of “secondary interaction” on hydrolysis by various acid proteinases from molds and yeasts, synthetic peptides
amino acid residues) were used as substrates. Pepsin was used for the comparative study. These peptides were split at the peptide bonds indicated by the arrows, permitting examination of the effect of residue X distant by two or three amino acid residues from the hydrolytic site in the peptides. According to the system of Schechter and Berger (Biochem. Biophys. Res. Commun. 27; 157, 1967), the amino acid residues in peptide substrates were numbered P1, P2, etc. toward the N-terminal direction from the site of hydrolysis, and P1′, P2′, etc. toward the C-terminal direction. The results indicated that hydrolysis by these microbial enzymes is affected by at least six amino acid residues (P1-P3 and P1′-P3′) in peptide substrates, as is seen with pepsin. Elongation of the peptide chain with suitable amino acid residues from P1 to P2 or P3 and from P1′ to P2′ or P3′ in peptide substrates resulted in much or less increase of hydrolysis depending upon the species of the enzyme producers.  相似文献   

3.
The substrates Z-X
Leu-(Ala)2 and
Z-Phe X-(Ala)2 (Z = benzyloxycarbonyl, X = various amino acid residues) were synthesized in order to investigate the primary specificity of acid proteinases from molds and yeasts. Since these peptides are mainly susceptible to cleavage by the enzymes at the peptide bonds shown by the arrows, it was possible to determine the specificity with respect to the amino acid residues on both sides of the splitting point. Pepsin was used for comparison. The results indicated that the microbial acid proteinases exhibit specificity for aromatic or hydrophobic amino acid residues on both sides of splitting point in peptide substrates, as does pepsin. However, the microbial enzymes showed somewhat broader specificity than pepsin. The former enzymes, which possess trypsinogen-activating ability, show specificity for a lysine residue, while pepsin or Mucor rennin-like enzyme does not. Although pepsin is very specific for a tyrosine residue on the imino side of the splitting point, the microbial enzymes do not show such stringency.  相似文献   

4.
The specificity of various acid proteinases from mold and yeast such as Aspergillus niger, Aspergillus saitoi, Rhizopus chinensis, Mucor miehei, Rhodotorula glutinis, and Cladosporium sp. were comparatively determined using with
(X = various amino acid residues) as substrates. Pepsin was used in a comparative study. Since the peptides were susceptible to these enzymes at the peptide bonds indicated by the arrows, except for the ones from both Aspergillus species and Rhodotorula, we could examine their specificity with respect to the amino acid residue on both sides of the splitting point. The results indicated that the microbial enzymes were specific for aromatic, or bulky and hydrophobic amino acid residues on both sides, as had been observed with pepsin. The specificity of the enzymes from Aspergillus and Rhodotorula was not determined because of lack of hydrolysis of the peptides.  相似文献   

5.
The cysteine endoproteases (EP)-A and EP-B were purified from green barley (Hordeum vulgare L.) malt, and their identity was confirmed by N-terminal amino acid sequencing. EP-B cleavage sites in recombinant type-C hordein were determined by N-terminal amino acid sequencing of the cleavage products, and were used to design internally quenched, fluorogenic peptide substrates. Tetrapeptide substrates of the general formula 2-aminobenzoyl-P2-P1-P1′-P2′-tyrosine(NO2)-aspartic acid, in which cleavage occurs between P1 and P1′, showed that the cysteine EPs preferred phenylalanine, leucine, or valine at P2. Arginine was preferred to glutamine at P1, whereas proline at P2, P1, or P1′ greatly reduced substrate kinetic specificity. Enzyme cleavage of C hordein was mainly determined by the primary sequence at the cleavage site, because elongation of substrates, based on the C hordein sequence, did not make them more suitable substrates. Site-directed mutagenesis of C hordein, in which serine or proline replaced leucine, destroyed primary cleavage sites. EP-A and EP-B were both more active than papain, mostly because of their much lower Km values.  相似文献   

6.
A comparative study of the Bacillus subtilis neutral protease and Bacillus thermoproteolyticus thermolysin calalyzed hydrolysis of a few dipeptide sustrates including furylacryloylglycyl-L -leucine amide is reported. While differences in the kcat/Km were observed between the two enzymes toward substrates in which phenylalanine or leucine donated the amino group of the peptide bond, secondary effects of substituents on the carbonyl donating amino acid and pH profiles were quite similar. Differences were also observed toward protein substrates as compared to dipeptides.  相似文献   

7.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

8.
The aim of this work was to purify and characterize the extra-cellular leucine amino peptidase (LAP) from Streptomyces gedanensis and also study its applications for protein hydrolysis. The enzyme was purified to homogeneity by ammonium sulfate fractionation and sequential chromatography steps. LAP appeared to be a monomeric enzyme with a molecular weight of ~75 kDa determined by sodium dodecyl sulfate poly acryl amide gel electrophoresis (SDS-PAGE). The enzyme preferentially hydrolyzed leucine p-nitroanilide followed by Met, Phe, Lys and Arg derivatives. Kinetic studies on the purified enzyme confirmed that it can hydrolyze peptide as well as ester substrates at comparable rates. This amino peptidase was highly resistant to different concentrations of various organic solvents. The characteristics of this amino peptidase, including thermo stability, organic solvent resistance, its activity against various substrates, and also it showed esterase and peptidase activity at comparable rates; identified this amino peptidase as a novel one. The specificity towards aromatic and hydrophobic amino acid residues, the solvent-resistance and thermo stability make this amino peptidase could offer interesting possibilities for various industrial applications including debittering of protein hydrolysates, peptide and ester synthesis.  相似文献   

9.
The specificity of the alkaline proteinase from Aspergillus sojae was investigated. In the specificity studies with synthetic substrates, the enzyme hydrolyzed the peptide linkages involving the carboxyl group of leucine, tyrosine, phenylalanine, arginine and lysine. In the hydrolysis of natural proteins, the enzyme liberated relatively large peptides and traces of free amino acids, suggesting that the enzyme is of a typical endo-type.

N- and C-Terminal amino acid residues appearing during time course digestion of various proteins were determined. Considering the influence of amino acid composition of substrates on the frequencies of appearance of the terminal amino acids, it was estimated that the susceptibility of peptide bonds of substrate to the enzyme depends mainly on the carboxyl side residues, and, to far less extent, on the amino side residues of the peptide bonds. The enzyme showed relatively high specificity for lysine, tyrosine, histidine, arginine and phenylalanine residues at the carboxyl side of the susceptible linkages.  相似文献   

10.
Four aquatic fungi —Apodachlya brachynema and A. minima (Leptomitales), Aphanomyces laevis (Saprolegniales), and Pythium ultimum (Peronosporales) —were tested for growth in synthetic media containing one of a variety of carbon sources. Apodachlya brachynema readily utilized five amino acids — alanine, glutamate, aspartate, proline and leucine — as well as glucose and acetate. Growth on sucrose as a carbon source was slight. Apodachlya minima differed from A. brachynema in that it could not utilize proline and leucine. Aphanomyces laevis grew well on only three of the substrates tested — glucose, alanine and glutamate. Pythium ultimum utilized glucose, sucrose, maltose, cellobiose, alanine, glutamate, aspartate, proline, asparagine, ornithine, and serine, but not eight other amino acids. All of these fungi hydrolyzed gelatin. Radioactively labeled carbon dioxide was released during incubation of Aphanomyces laevis in media containing labeled leucine, proline, or phenylalanine. These data provide evidence of some catabolism of the three substrates although none of these substrates can support the growth of Aphanomyces laevis as a sole source of carbon and nitrogen.  相似文献   

11.
We developed a spectrophotometric assay for peptide hydrolysis by aminopeptidases (APs). The assay enables the measurement of free amino acids liberated by AP-catalyzed peptide hydrolysis using 4-aminoantipyrine, phenol, peroxidase, and l-amino acid oxidase. We investigated the specificity of bacterial APs [enzymes from Streptomyces griseus (SGAP), Streptomyces septatus (SSAP), and Aeromonas proteolytica (AAP)] toward peptide substrates using this assay method. Although these enzymes most efficiently cleave leucyl derivatives among 20 aminoacyl derivatives, in peptide hydrolysis, the catalytic efficiencies of Phe-Phe hydrolysis by SGAP and SSAP exceed that of Leu-Phe hydrolysis. Furthermore, all enzymes showed the maximum catalytic efficiencies for Phe-Phe-Phe hydrolysis. These results indicate that the hydrolytic activities of bacterial APs are affected by the nature of the penultimate residue or flanking moiety and the length of the peptide substrate.  相似文献   

12.
Aspergillus terreus MTCC 11096 isolated from the soils of agricultural fields cultivating sweet sorghum was previously identified to produce feruloyl esterases (FAEs). The enzymes responsible for feruloyl esterase activity were purified to homogeneity and named as AtFAE‐1, AtFAE‐2, and AtFAE‐3. The enzymes were monomeric having molecular masses of 74, 23 and 36 kDa, respectively. Active protein bands were identified by a developed pH‐dependent zymogram on native PAGE. The three enzymes exhibited variation in pH tolerance ranging between pH 5–8 and thermostability of up to 55°C. Inhibition studies revealed that the serine residue was essential for feruloyl esterase activity; moreover aspartyl and glutamyl residues are not totally involved at the active site. Metal ions such as Ca2+, K+, and Mg2+ stabilized the enzyme activity for all three FAEs. Kinetic data indicated that all three enzymes showed catalytic efficiencies (kcat/Km) against different synthesized alkyl and aryl esters indicating their broad substrate specificity. The peptide mass fingerprinting by MALDI/TOF‐MS analysis and enzyme affinity toward methoxy and hydroxy substituents on the benzene ring revealed that the AtFAE‐1 belonged to type A while AtFAE‐2 and AtFAE‐3 were type C FAE. The FAEs could release 65 to 90% of ferulic acid from agrowaste substrates in the presence of xylanase. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:924–932, 2013  相似文献   

13.
14.
Seah SY  Britton KL  Rice DW  Asano Y  Engel PC 《Biochemistry》2002,41(38):11390-11397
Homology-based modeling of phenylalanine dehydrogenases (PheDHs) from various sources, using the structures of homologous enzymes Clostridium symbiosum glutamate dehydrogenase and Bacillus sphaericus leucine dehydrogenase as a guide, revealed that an asparagine residue at position 145 of B. sphaericus PheDH was replaced by valine or alanine in PheDHs from other sources. This difference was proposed to be the basis for the poor discrimination by the B. sphaericus enzyme between the substrates L-phenylalanine and L-tyrosine. Residue 145 of this enzyme was altered, by site-specific mutagenesis, to hydrophobic residues alanine, valine, leucine, and isoleucine, respectively. The resultant mutants showed a high discrimination, above 50-fold, between L-phenylalanine and L-tyrosine. This higher specificity toward L-phenylalanine was due to K(m) values for L-phenylalanine lowered more than 20-fold compared to the values for L-tyrosine. The greater specificity for L-phenylalanine in the wild-type Bacillus badius enzyme, which has a valine residue in the corresponding position, was also found to be largely due to a lower K(m) for this substrate. Activities were also measured with a range of six amino acids with aliphatic, nonpolar side chains, and with the corresponding oxoacids, and in all cases the specificity constants for these substrates were increased in the mutant enzymes. As with phenylalanine, these increases are mainly attributable to large decreases in K(m) values.  相似文献   

15.
The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, it is encoded by tatABC genes and the system recognizes substrates bearing signal peptides with a conserved twin-arginine motif. Most Gram-positive organisms lack a tatB gene, indicating major differences in organisation and/or mechanism. Here, we have characterized the essential targeting determinants that are recognized by a Bacillus subtilis TatAC-type system, TatAdCd. Substitution by lysine of either of the twin-arginine residues in the TorA signal peptide can be tolerated, but the presence of twin-lysine residues blocks export completely. We show that additional determinants can be as important as the twin-arginine motif. Replacement of the −1 serine by alanine, in either the TorA or DmsA signal peptide, almost blocks export by either the B. subtilis TatAdCd or Escherichia coli TatABC systems, firmly establishing the importance of this −1 residue in these signal peptides. Surprisingly, the +2 leucine in the DmsA signal peptide (sequence SRRGLV) appears to play an equally important role and substitution by alanine or phenylalanine blocks export by both the B. subtilis and E. coli systems. These data identify three distinct determinants, whose importance varies depending on the signal peptide in question. The data also show that the B. subtilis TatAdCd and E. coli TatABC systems recognize very similar determinants within their target peptides, and exhibit surprisingly similar responses to mutations within these determinants.  相似文献   

16.
The paper deals with studying the properties of aminopeptidase isolated from Str. griseus culture fluid. The preparation is characterized by a high specific activity and heat stability, it has no admixtures of carboxypeptidases and proteinases. The enzyme is easily inhibited by EDTA, but the addition of Ca2+ evokes its complete reactivation. A partial recovery of the activity may be also reached under the influence of some other bivalent metals. In hydrolysis of di- and tripeptides it is shown that the enzyme has a preferential effect on the substrates with N-terminal leucine. Peptides with N-terminal alanine, valine and glycine are almost not hydrolyzed. The use of the native insulin and decapeptide with the known amino acidic sequence as substrates shows that aminopeptidase can hydrolyze proteins and peptides with the successive release of some amino acids: phenylalanine, serine triptophane, valine, asparagine, etc. Glycine is difficult for removal and may inhibit the further hydrolysis of the polypeptide chain.  相似文献   

17.
The regulation of RNA degradation by specific amino acids and insulin was investigated in cultured rat hepatocytes from fed rats previously injected in vivo with [6-14C]orotic acid. The effects of three groups of amino acids were compared to those of a complete amino acid mixture. The first one consisted of the eight amino acids (leucine, proline, glutamine, histidine, phenylalanine, tyrosine, methionine, tryptophan) previously found to be particularly effective in the control of proteolysis. The two other groups were defined from our study with single additions of amino acids, one consisting of proline, asparagine, glutamine, alanine, phenylalanine, and leucine and the other including the latter group with serine, histidine, and tyrosine. The results showed that these three groups were able to strongly inhibit deprivation-induced RNA breakdown at one and ten times normal plasma concentrations but to a lower extent than the complete amino acid mixture. Six amino acids (proline, asparagine, glutamine, alanine, phenylalanine, leucine) inhibited individually RNA degradation by more than 20%. However, the deletions of proline, asparagine, glutamine, or alanine from the group of these six amino acids were not followed by a loss of inhibitory effect. On the contrary, an important loss of inhibition was observed when leucine and phenylalanine were deleted. Furthermore, only these two amino acids exhibited an additive inhibitory effect. Thus leucine and phenylalanine could be considered as important inhibitors of RNA breakdown in cultured rat hepatocytes. Finally, insulin which had no significant effect on RNA degradation in the absence of amino acids, was able to potentiate the inhibitory effect of different amino acid groups. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site residues.  相似文献   

19.
Organic co-solvents can expand the use of enzymes in lignocellulose deconstruction through making substrates more soluble and thus more accessible. In choosing the most adequate co-solvent for feruloyl esterases, hydrolysis of methyl p-hydroxycinnamates by three pure enzymes (and a multi-enzyme preparation) was evaluated. Low concentrations of dimethylsulfoxide (DMSO) enhanced hydrolysis by two of the enzymes while at levels >20%, activity was reduced. DMSO also enhanced acetyl esterase-type activity of the enzymes. The co-solvent effect was different for each enzyme-substrate couple, indicating that other factors are also involved. Kinetic studies with a Talaromyces stipitatus feruloyl esterase showed low concentrations of dimethylsulfoxide enhanced the hydrolytic rate while Km also increased. Moreover, long-term incubation (96 h) of an Aspergillus niger feruloyl esterase in dimethylsulfoxide:water provided to the enzyme the ability to hydrolyze methyl p-coumarate, suggesting an active-site re-arrangement. Dimethylsulfoxide (10-30%) is proposed as an adequate co-solvent for feruloyl esterase treatment of water-insoluble substrates.  相似文献   

20.
It is well known that blue pigment is formed by the reaction of amino acids with genipin, the hydrolyzate of geniposide from gardenia fruits. We studied the effect of the amino acid on blue pigment formation and found a linear relationship between the molecular weight of the neutral amino acid and the λmax of the blue pigment formed. Thin layer chromatographic analysis revealed brilliant skyblue components of the blue pigments formed from glycine, alanine, leucine, phenylalanine and tyrosine. Furthermore, a brilliant skyblue color was obtained by a reverse phase column chromatography (HP-20) of blue pigments formed from glycine, leucine and phenylalanine. The λmax of these purified pigments lay above 600 nm, and the peaks were sharper than those of crude pigments. After standing for two weeks at 40°C in 40% ethanol solution, the brilliant skyblue pigment formed from genipin and glycine remained stable, losing none of its initial absorbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号