首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Polistes, nestmate recognition relies on the learning of recognition cues from the nest. When wasps recognize nestmates, they match the template learned with the odor of the encountered wasp. The social wasp Polistes biglumis use the homogeneous odor of their colony to recognize nestmates. When these colonies become host colonies of the social parasite P. atrimandibularis, colony odor is no longer homogeneous, as the parasite offspring have an odor that differs from that of their hosts. In trying to understand how the mechanism of nestmate recognition works in parasitized colonies and why parasite offspring are accepted by hosts, we tested the responses of resident Polistes biglumis wasps from parasitized and unparasitized colonies to newly emerged parasites and to nestmate and non-nestmate conspecifics. The experiments indicate that immediately upon eclosion both young parasites and young hosts lack a colony odor and that colony odor can be soon acquired from the accepting colony. In addition, while residents of nonparasitized colonies recognize only the odor of their species, resident hosts of parasitized colonies have learned a template that fits the odors of two species.  相似文献   

2.
Cyclical oligogyny is considered to be the mechanism that is most likely to be responsible for stabilizing cooperation in polygynous, epiponine wasps, in which single-queen colonies produce new queens and multiple-queen colonies produce males. In contrast with the number of studies on relatedness among adult females, we know little about relatedness among males in polygynous epiponine wasps. We estimated worker and male relatedness in the Brazilian epiponine wasp Polybia paulista Ihering and found that colonies of P. paulista produced males when they contained multiple queens. Although average relatedness within males did not differ significantly from 0.5, the number of alleles observed suggests that there were more than one queen to produce males in each colony. Our data would be helpful to elucidate dynamics of the male production in a colony of epiponine wasps.  相似文献   

3.
The recognition of nestmates from alien individuals is a well known phenomenon in social insects. In the stenogastrine wasp Parischnogaster striatula, we investigated the ability of females to recognize nestmates and the cues on which such recognition is based. Recognition of nestmates was observed in naturally occurring interactions between wasps approaching a nest and the resident females on that nest. This recognition was confirmed in experiments in which nestmates or alien conspecifics were presented to resident females. In naturally occurring interactions, nestmates generally approach their nest with a direct flight, while aliens usually hover in front of the nest before landing. In experiments in which the presented wasps were placed close to the nest in a direct manner, antennation of the presented wasp generally occurred, indicating that chemical cues are involved. Experiments in which dead alien individuals, previously washed in hexane, and then reapplied with extracts were recognized by colonies giving further evidence that chemical cues mediate nestmate recognition. Epicuticular lipids, known to be nestmate recognition cues in social insects, were chemically analysed by GC-MS for 44 P. striatula females from two different populations (13 different colonies). Discriminant analysis was performed on the data for the lipid mixture composition. The discriminant model showed that, in the samples from these two populations, 68.2% and 81.9% of the specimens could be correctly assigned to their colony.  相似文献   

4.
We conducted field experiments to examine whether young males of different age cohorts were accepted from alien colonies in the swarm‐founding wasp Polybia paulista. We showed, as for young females in other social wasp species, that newly emerged males were frequently accepted from alien colonies. Our study suggests that young males of P. paulista acquire colony‐specific chemical odors shortly after emergence.  相似文献   

5.
Summary. We used microsatellite markers to analyze the hierarchical genetic structure of the North American mound building ant, Formica podzolica. About one-third of all colonies were headed by a single queen (monogynous) whose effective mating frequency was close to one (nestmate worker relatedness r = 0.70), while the remaining colonies were polygynous, with low average nestmate relatedness (r = 0.16). The low worker relatedness found in most polygynous colonies furthermore suggested that the numbers of queens in polygynous colonies of this ant are usually high. Contrary to what has been described from other ants with a queen number dichotomy, we did not find an effect of social form variation on the partitioning of genetic variation above the level of the colony. We found no significant differentiation between the sympatric social forms of F. podzolica, nor did differentiation among populations appear to be affected by colony social organization. These unexpected patterns of genetic structure may have resulted from differences either in the spatial distribution of the social forms or in their social flexibility.Received 12 January 2004; revised 23 February 2004; accepted 10 March 2004.  相似文献   

6.
The evolution of sociality is facilitated by the recognition of close kin, but if kin recognition is too accurate, nepotistic behaviour within societies can dissolve social cohesion. In social insects, cuticular hydrocarbons act as nestmate recognition cues and are usually mixed among colony members to create a Gestalt odour. Although earlier studies have established that hydrocarbon profiles are influenced by heritable factors, transfer among nestmates and additional environmental factors, no studies have quantified these relative contributions for separate compounds. Here, we use the ant Formica rufibarbis in a cross‐fostering design to test the degree to which hydrocarbons are heritably synthesized by young workers and transferred by their foster workers. Bioassays show that nestmate recognition has a significant heritable component. Multivariate quantitative analyses based on 38 hydrocarbons reveal that a subset of branched alkanes are heritably synthesized, but that these are also extensively transferred among nestmates. In contrast, especially linear alkanes are less heritable and little transferred; these are therefore unlikely to act as cues that allow within‐colony nepotistic discrimination or as nestmate recognition cues. These results indicate that heritable compounds are suitable for establishing a genetic Gestalt for efficient nestmate recognition, but that recognition cues within colonies are insufficiently distinct to allow nepotistic kin discrimination.  相似文献   

7.
A colony of social insects is like a fortress where access is allowed only to colony members. The epicuticular mixture of hydrocarbons has been widely reported to be involved in nestmate recognition in insects. However, recent studies have shown that polar compounds (mainly peptides) are also present, mixed with hydrocarbons, on the cuticle of various insects, including the paper wasps of the genus Polistes. As these polar compounds are variable among Polistes species and are perceived by the wasps, this cuticular fraction could also be involved in nestmate recognition. Through MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time of Flight) mass spectrometry analysis, we assessed, for the first time, the intercolonial variability of the cuticular polar fraction of Polistes dominulus in order to evaluate its reliability as source of nestmate recognition cues. We then tested through behavioral assays the importance of the 2 isolated fractions (apolar and polar) in nestmate recognition by presenting them separately to colonies of P. dominulus. Our results showed that the cuticular polar compounds are not colony specific and they are not used by paper wasps to discriminate nestmates from non-colony members. On the contrary, we confirmed that the isolated cuticular hydrocarbons are the chemical mediators prompting nestmate recognition in paper wasps.  相似文献   

8.
The role of nest-paper hydrocarbons in nestmate recognition was examined in the social wasp Dolichovespula maculata. Pupae were excised from nine colonies of D. maculata and placed in separate gel capsules in the laboratory. When workers emerged, they were isolated in the absence of other wasps in one of four conditions: 1. With an untreated fragment of their natal nest; 2. With a fragment of their nest that had been extracted with hexane to remove surface hydrocarbons; 3. With a fragment of their nest that had been extracted with hexane, and had then had the extract containing the surface hydrocarbons reapplied; or 4. In the absence of any nest fragment. After 4 d, the newly emerged workers were tested for nestmate recognition with an experienced nestmate and an experienced non-nestmate in blind triplet tests. Prior exposure to nest-paper hydrocarbons had no significant effect upon the ability of newly emerged or experienced wasps to recognize their nestmates. Moreover, nestmate recognition did not occur in any treatment group.  相似文献   

9.
Summary. Queens of the parasitic social wasp, Polistes atrimandibularis, temporarily mimic the odor of their host species, Polistes biglumis, but their offspring have parasite-specific odors. As a consequence, in parasitized colonies individuals with different odors co-inhabit the colony and host workers, who are responsible for colony defense, accept wasps with different odors. In order to verify whether this particular condition causes a change in recognition abilities of hosts, we tested nestmate/non-nestmate discrimination in field colonies invaded by social parasites (and in non-parasitized colonies as controls). Results show that parasitized colonies distinguish between nestmates and non-nestmates, distinguish their parasite queen from those that usurped alien colonies, and accept their parasite's non-mimetic offspring but make more recognition errors than non-parasitized colonies. The optimal acceptance threshold model predicts that when the frequency of encountering non-kin increases, residents become less permissive towards intruders. However, my data show that parasitized colonies are more permissive towards non-nestmates with respect to non-parasitized colonies but they are also more aggressive towards nestmates, suggesting that host workers' learning abilities are impaired.  相似文献   

10.
Optimal colony size in eusocial insects likely reflects a balance between ecological factors and factors intrinsic to the social group. In a seminal paper Michener (1964) showed for some species of social Hymenoptera that colony production of immature stages (productivity), when transformed to a per-female basis, was inversely related to colony size. He concluded that social patterns exist in the social insects that cause smaller groups to be more efficient than larger groups. This result has come to be known as “Michener’s paradox” because it suggests that selection on efficiency would oppose the evolution of the large and complex societies that are common in the social insects. Michener suggested that large colony size has other advantages, such as improved defense and homeostasis, that are favored by selection. For his analysis of swarm-founding wasps, Michener combined data from colonies of different species and different developmental stages in order to obtain adequate sample sizes; therefore, his study did not make a strong case that efficiency decreases with increasing colony size (across colonies) in these wasps. We tested Michener’s hypothesis on the Neotropical swarm-founding wasp Parachartergus fraternus, while controlling for stage of colony development. We found that small colonies were more variable in percapita productivity relative to larger colonies, but found no evidence for a negative relationship between efficiency and size across colonies. Received 1 February 2006; revised 5 May 2006; accepted 11 May 2006.  相似文献   

11.
Nestmate recognition is a key feature of social insects, as it preserves colony integrity. However, discrimination of non‐nestmates and nestmate recognition mechanisms are highly variable according to species and social systems. Here, we investigated the intraspecific level of aggression in the facultative polygynous and polydomous ant, Ectatomma tuberculatum Olivier (Hymenoptera: Formicidae: Ectatomminae), in a population with a strong genetic structure. We found that the intraspecific level of aggression was generally low in this population of E. tuberculatum. However, the level of aggression was significantly correlated with the geographical distance, suggesting that both genetic and environmental cues could be involved in nestmate recognition and discrimination mechanisms. Moreover, polydomy was confirmed by the absence of aggression between workers from nests at a distance of 3 m, while the level of aggression was significantly higher between workers from nests separated by a distance of 10 or 1300 m. Field experiments showed that the low level of aggression between neighbouring colonies was associated with shared foraging areas, which could suggest that familiarization processes may occur in this species. We propose that the particular social organization of this species, with secondary polygyny, polydomy, and budding, may have favoured a high acceptance threshold, because of the low probability of interactions with unrelated conspecifics, the high cost of erroneously rejecting nestmates, and the low cost of accepting non‐nestmate workers. The resulting open recognition system can thus allow privileged relationships between neighbouring colonies and promote the ecological dominance of E. tuberculatum in the mosaic of arboreal ants.  相似文献   

12.
Social insects use cuticular hydrocarbons (CHCs) as recognition cues in a variety of social contexts, such as species and nestmate recognition. Discrimination of nestmates is an important requisite to avoid exploitation by unrelated individuals. In social wasps, use of CHCs in nestmate recognition has been demonstrated only among adults, whereas very little is known regarding brood recognition. We performed gas chromatography-mass spectrometry analyses of the CHCs of adults and larvae of the social wasp Polistes dominulus and found that larvae possess a characteristic chemical colony-specific pattern distinct from that of adults. Behavioural assays confirmed that these are recognized and discriminated by adults. Larval epicuticular substances are therefore sufficient for recognition of nestmate larvae by adults and demonstrate that wasps are able to discriminate between alien and nestmate larval odours.  相似文献   

13.
Social insects can discriminate between nestmates and aliens by comparing the chemical phenotype of an individual with the neural representation of their own colony odor (template). For social paper wasps of the genus Polistes, a general recognition model has been proposed and tested on few North American species: wasps learn colonial recognition cues from the nest paper during the first hours after emergence as adults. However, a recent study revealed that workers of Polistes dominula do not necessarily use the nest paper for early post-emergence cue-learning, suggesting that cues used for the formation of the referent template in this species could be learned at different life stages. Pre-natal learning is a widespread phenomenon in animals and it can shape various behaviors in adults. Here, we investigated whether pre-imaginal learning affects later nestmate recognition in P. dominula wasps. We reared worker pupae in artificial conditions to test whether the absence of nest material, or the exposure to nest material taken from a foreign conspecific colony, during pupal development would alter the nestmate recognition ability in adult life. Our results show that wasps maintain their correct recognition ability regardless of the treatment, suggesting that wasps do not form their referent template during the pupal stage from the nest paper. Alternative hypotheses for template formation timing and source of recognition cues are discussed. Moreover, we investigated whether young wasps already possess, on their own body, reliable chemical cues to form a recognition template by self-referent phenotype matching.  相似文献   

14.
The role of nest paper hydrocarbons in nest and nestmate recognition for the social waspPolistes metricus was examined. Newly emergedP. metricus workers maintained in the laboratory spent four days alone on a fragment of nest paper that was subjected to one of the following tretments: untreated, extracted with hexane to remove surface hydrocarbons, or extracted with extract reapplied. Test wasps were returned to their natal nest with nestmates and observed for 1 h. Time spent on nest by test wasp and its behaviors were recorded. Wasps exposed to untreated and reapplied nest fragments spent an average of 34.13 and 31.75 min on their nests, respectively, while wasps from extracted fragments averaged 17.19 min. Behavior of wasps exposed to extracted paper differed significantly from wasps exposed to paper with hydrocarbons. These results suggest that exposure to nest paper hydrocarbons is important for both nest and nestmate recognition.  相似文献   

15.
Unlike all other social spiders, the social huntsman spider, Delena cancerides, has been reported to rapidly respond to non-nestmates with lethal aggression, similar to the behavior of some eusocial insects. We tested for the presence of nestmate recognition in D. cancerides under laboratory conditions by introducing 105 unrelated alien conspecifics into foreign colonies and comparing their behavior to 60 control spiders removed and returned to their natal colony. Spiders demonstrated nestmate recognition by investigating alien spiders far more than nestmates and by resting closer to nestmates than to aliens. Serious attacks or deaths occurred in 23% of all trials; however, aggression was not directed significantly more toward aliens than to nestmates. Most notably, aggression was largely mediated by the adult females (resident or alien), who were most likely to attack or kill other subadult or mature individuals. Young individuals (resident or alien) were largely immune from serious aggression. Spiders recently collected from the field tended to be more aggressive than spiders born and raised in the laboratory, possibly due to blurring of recognition cues related to laboratory husbandry. Our findings support the prediction that nestmate recognition should evolve when there is a benefit to discriminating against non-kin, as in this social spider system where foraging individuals may enter a foreign colony and the colony retreat is a limited resource.  相似文献   

16.
Discriminating between group members and strangers is a key feature of social life. Nestmate recognition is very effective in social insects and is manifested by aggression and rejection of alien individuals, which are prohibited to enter the nest. Nestmate recognition is based on the quantitative variation in cuticular hydrocarbons, which can include heritable cues from the workers, as well as acquired cues from the environment or queen-derived cues. We tracked the profile of six colonies of the ant Camponotus aethiops for a year under homogeneous laboratory conditions. We performed chemical and behavioral analyses. We show that nestmate recognition was not impaired by constant environment, even though cuticular hydrocarbon profiles changed over time and were slightly converging among colonies. Linear hydrocarbons increased over time, especially in queenless colonies, but appeared to have weak diagnostic power between colonies. The presence of a queen had little influence on nestmate discrimination abilities. Our results suggest that heritable cues of workers are the dominant factor influencing nestmate discrimination in these carpenter ants and highlight the importance of colony kin structure for the evolution of eusociality.  相似文献   

17.
Policing, i.e. all behaviours that prevent a nestmate from reproducing, is currently observed in social insects. It is presumed to have evolved to regulate potential conflicts generated by genetic asymmetries or to enhance colony efficiency by avoiding surplus reproductives and brood. In the ant, Ectatomma tuberculatum, individual queen fecundity was similar in monogynous and polygynous colonies issued from a Mexican population. Egg cannibalism, however, occurred in the polygynous colonies. The stealing and destruction of reproductive queen‐laid eggs involved only nestmate queens, even if they were highly related. No queen appeared to monopolize reproduction in the polygynous colonies. But, the observed value of relatedness among workers differed from the expected value, suggesting an unequal sharing of reproduction between queens. We discussed whether the cannibalism of queen‐laid eggs in E. tuberculatum results from a competition for reproduction among queens or if this phenomenon is related to constraints on nutritional resources.  相似文献   

18.
Abstract

The nematode (Pheromermis spp.) is a potential biocontrol agent for wasps (Vespula spp.) in countries where invasive populations of wasps cause serious economic, social, and conservation problems. Using a simulation model previously developed for hornets, which belong to a genus with a similar biology to Vespula, we investigated the possibility of using nematodes as a biological control agent. The model wasp colony was exposed to different simulated levels of nematode infection during colony development, and the final number of wasp sexuals produced recorded. The model predicted that early and high levels of wasp infection had the greatest effect on reducing sexual production. However, even colonies with high (80%) levels of infection were still able to produce some sexuals, indicating that wasp colonies are resilient to infections. The model identified several key areas needing further research, including the effects of nematodes on the behaviour and physiology of wasps, of lengthening the infective period, and of increasing infection levels in both the wasps and intermediate transport hosts.  相似文献   

19.
Reproductive partitioning among group members is a key feature in social Hymenoptera. We investigated the genetic colony structure of a tropical paper wasp Polistes olivaceus, with an emphasis on variation in the number of queens and reproductive sharing among queens. Among 22 P. olivaceus colonies, 6 were monogynous, 9 polygynous, and 7 were queenless. Adults and brood (eggs and larvae) were genotyped based on six polymorphic microsatellite loci. In each of the polygynous colonies, progenies were assigned to their mothers using maximum-likelihood methods. Nestmate queens were full sisters. The vast majority of reproduction appeared to be monopolized by the dominant queen (α), and the overall reproductive skews were 0.63 ± 0.04 (B index) and 0.97 ± 0.02 (S c index). Although all nestmate queens had equal reproductive potential, the high magnitude of reproductive skew was enigmatic in this species. Although 9.55 ± 2.07 workers contained developed ovaries in 11 of 15 queen-right colonies, they were unrelated to the nestmate queens but related to each other as full sisters, suggesting that they were the remaining offspring of superseded queens. In 2 of the 11 colonies, we detected male eggs produced by reproductive workers. On average, 7.27 % of the total genotyped male eggs were derived from reproductive workers among the colonies. These results suggest three possibilities regarding the presence of reproductive workers in the P. olivaceus colonies: drifting between colonies, putative remaining offspring from superseded queens, and the offspring of unrelated females who joined the colonies and reproduced there. We found no worker-derived larvae or adult males, suggesting that male eggs were removed by nestmates at some point between oviposition and hatching.  相似文献   

20.
The venoms of the social wasps evolved to be used as defensive tools to protect the colonies of these insects against the attacks of predators. Previous studies estimated the presence of a dozen peptide components in the venoms of each species of these insects, which altogether comprise up to 70% of the weight of freeze-dried venoms. In the present study, an optimized experimental protocol is reported that utilizes liquid chromatography coupled to electrospray ionization mass spectrometry for the detection of peptides in the venom of the social wasp Polybia paulista; peptide profiles for both intra- and inter-colonial comparisons were obtained using this protocol. The results of our study revealed a surprisingly high level of intra- and inter-colonial variability for the same wasp species. We detected 78–108 different peptides in the venom of different colonies of P. paulista in the molar mass range from 400 to 3000 Da; among those, only 36 and 44 common peptides were observed in the inter- and intra-colony comparisons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号