首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In conflict with the Z-scheme of photosynthesis, it has recently been reported [Greenbaum et al. Nature (1995) 376: 438–441; Lee et al. Science (1996) 273: 364–367] that Photosystem II can drive ferredoxin reduction and photoautotrophic growth in some mutants of Chlamydomonas lacking detectable Photosystem I reaction centre, P700. Using the same mutants, B4 and F8, here we report that action spectra and parameters of flash yields of different photoreactions show the operation in ferredoxin-dependent H2 photoproduction and CO2 fixation of a fraction (at least 5% compared to wild- type) of the only Photosystem I complexes.  相似文献   

2.
Target theory and the photoinactivation of Photosystem II   总被引:1,自引:0,他引:1  
Application of target theory to the photoinactivation of Photosystem II in pea leaf discs (Park et al. 1995, 1996a,b) reveals that there is a critical light dosage below which there is complete photoprotection and above which there is photoinactivation (i.e a light-induced loss of oxygen flash yield). The critical dosage is about 3 mol photons m–2 for medium and high light-grown leaves and 0.36 mol photons m–2 for low light-grown leaves. Photoinactivation is a one-hit process with an effective cross-section of 0.045 m2 mol–1 photons which does not vary with growth irradiance, unlike the cross-section for oxygen evolution which increases with decreasing growth irradiance. The cross-section for oxygen evolution increased by about 20% following exposure to 6.8 mol photons m–2 which may be due to energy transfer from photoinactivated units to functional Photosystem II units. We propose that the photoinactivation of PS II begins when a small group of PS II pigment molecules whose structure is uninfluenced by growth irradiance, becomes uncoupled energetically from the rest of the photosynthetic unit and thus no longer transfers excitions to P680. De-excitation of this group of pigment molecules provides the energy which leads to the damage of Photosystem II. Treatment of pea leaves with dithiothreitol, an inhibitor of the xanthophyll cycle, decreases the critical dosage i.e. decreases photoprotection but has no effect on the PS II photoinactivation cross-section. Treatment with 1 M nigericin increased the photoinactivation cross-section of PS II as did exposure to lincomycin which inhibits D1 protein synthesis and thus the repair of PS II reaction centres.Abbreviations DTT- dithiothreitol - PS II- Photosystem II - Fm- maximum fluorescence - Fv- variable fluorescence - LHCIIb- main light harvesting pigment-protein complex of PS II - D1 protein- psbA gene product - P680- reaction centre chlorophyll of Photosystem II - Qa- first quinone electron acceptor of Photosystem II - (o2)- cross-section for oxygen evolution - (pi)- cross-section for photoinactivation  相似文献   

3.
The EPR characteristics of Photosystem II electron acceptors are described, in membrane and detergent-treated preparations from a mutant of Chlamydomonas reinhardii lacking Photosystem I and photosynthetic ATPase. The relationship between the quinone-iron and pheophytin acceptors is discussed and a heterogeneity of reaction centres is demonstrated such that only a minority of reaction centres were capable of secondary electron donation at temperatures below 100 K. Only these centres were therefore able to stabilise a reduced acceptor below 100 K. Parallel experiments using a barley mutant (viridis zb63) which also lacks Photosystem I, provide similar results indicating that the C. reinhardii system can provide a general model for the Photosystem II electron acceptor complex. The similarity of the system to that of the purple photosynthetic bacteria is discussed.  相似文献   

4.
Abstract A thermophilic strain of Synechococcus sp. was grown under light-limited conditions at its optimum temperature of 58°C and at 38°C in order to investigate the effect of growth temperature on the composition of the photosynthetic apparatus. Cells grown at 38°C had a ratio of Photosystem I to Photosystem II of 2.2, close to that known to occur in unstressed mesophilic strains of Synechococcus . Growth at the higher temperature led to a doubling of the number of Photosystem I reaction centres per cell whilst Photosystem II remained essentially unchanged, causing the Photosystem I/Photosystem II ratio to rise to 4.1. These changes were correlated with an increase in the number of concentric layers of thylakoid membranes from four to nine. It is suggested that these changes result from a higher relative demand for energy (ATP) during growth at elevated temperatures.  相似文献   

5.
Photosystem II (PSII) is a homodimeric protein-cofactor complex embedded in the thylakoid membrane that catalyses light-driven charge separation accompanied by the water splitting reaction during oxygenic photosynthesis. In the first part of this review, we describe the current state of the crystal structure at 3.0 A resolution of cyanobacterial PSII from Thermosynechococcus elongatus [B. Loll et al., Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature 438 (2005) 1040-1044] with emphasis on the core antenna subunits CP43 and CP47 and the small membrane-intrinsic subunits. The second part describes first the general theory of optical spectra and excitation energy transfer and how the parameters of the theory can be obtained from the structural data. Next, structure-function relationships are discussed that were identified from stationary and time-resolved experiments and simulations of optical spectra and energy transfer processes.  相似文献   

6.
The binding of the herbicide atrazine to thylakoid membranes is often used to quantify Photosystem II reaction centres. Two atrazine binding sites, with high and low affinities, have been observed on the D1 and D2 polypeptides of Photosystem II, respectively (McCarthy S., Jursinic P. and Stemler A. (1988) Plant Physiol. 86S:46). We have observed that the accessibility of the low-affinity binding sites is variable, being limited in freshly isolated thylakoids or in fresh frozen-thawed thylakoids, but increasing during storage of the membranes on ice. In contrast, the accessibility of the high-affinity binding sites, which are titratable at low concentrations (< 500 nM) of herbicide, is much less variable, although the dissociation constant is greatly influenced by ethanol. We conclude that to quantify Photosystem II reaction centres by atrazine binding, it is sufficient and more reliable to assay only the high-affinity binding sites.  相似文献   

7.
《BBA》1987,890(2):160-168
Radiation inactivation studies on the functional size of electron-transport processes in the Photosystem I reaction-centre complex showed the following characteristics. (1) The molecular mass required for electron transport from P-700 to iron-sulphur centre A was below 40 kDa. (2) Independent inactivation of iron-sulphur centres A and B was observed indicating their location on separate polypeptides. (3) The molecular mass of the polypeptides containing iron-sulphur centres A and B were 5–10 kDa based on a linear electron-transfer chain or 15–20 and 5–10 kDa (centre B) based on a branched chain. (4) A reaction centre ‘core’ containing the electron carriers for electron transport from P-700 to iron-sulphur centre X was indicated. These observations are discussed in comparison to current ideas on the polypeptide composition of the Photosystem I reaction centre. It is concluded that the radiation inactivation technique did not measure the size of Photosystem I polypeptides binding chlorophyll accounting for the small overall target size. The observed functional size came mostly from inactivation of the iron-sulphur centres showing that they are located on separate polypeptides.  相似文献   

8.
The cyanobacterium Chlorogloea fritschii loses Photosystem II activity, measured by delayed fluorescence and oxygen evolution, during dark heterotrophic growth, but retains Photosystem I, measured as light induced EPR signals. Following transition to the light, Photosystem II recovers in two stages, the first of which does not require protein synthesis. New Photosystem I reaction centres are not synthesised until after net chlorophyll synthesis has commenced. Carbon dioxide fixation recovery commences immediately, the initial rate being unaffected by chloramphenicol. The recovery of carbon dioxide fixation is not directly related to oxygen evolution rate and is only inhibited slightly by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone.  相似文献   

9.
The immersion depths (r) of the main functional components of the reaction centres of the Photosystem 2 in the thylakoid membranes were determined by ESR at 77K. It was shown that P680(+), Pheo(-) (pheophytin), and Z(+) (secondary electron donor) the r value was 2-4, 4-7 and 14-20 A, respectively. On the basis of these and reference data a model of location of the Photosystem 2 reaction centre components in the photosynthetic membrane was suggested.  相似文献   

10.
We review recent advances in the study of the photosystem I reaction centre, following the determination of a spectacular 2.5 A resolution crystal structure for this complex of Synechococcus elongatus. Photosystem I is proving different to type II reaction centres in structure and organization, and the mechanism of transmembrane electron transfer, and is providing insights into the control of function in reaction centres that operate at very low redox potentials. The photosystem I complex of oxygenic organisms has a counterpart in non-oxygenic bacteria, the strictly anaerobic phototrophic green sulphur bacteria and heliobacteria. The most distinctive feature of these type I reaction centres is that they contain two copies of a large core polypeptide (i.e. a homodimer), rather than a heterodimeric arrangement of two related, but different, polypeptides as in the photosystem I complex. To compare the structural organization of the two forms of type I reaction centre, we have modelled the structure of the central region of the reaction centre from green sulphur bacteria, using sequence alignments and the structural coordinates of the S. elongatus Photosystem I complex. The outcome of these modelling studies is described, concentrating on regions of the type I reaction centre where important structure-function relationships have been demonstrated or inferred.  相似文献   

11.
《BBA》1987,892(1):42-47
Room-temperature single photon timing measurements on Photosystem-II (PS II-) enriched thylakoid fragments at low excitation energies indicate the presence of three kinetic decay components of chlorophyll fluorescence arising from PS-II-associated pigments. Closing the PS II reaction centres produced three variable components, with lifetime values of 0.02–0.25, 0.15–0.90 and 0.35–2.0 ns, between the initial (F0) and maximal (Fm) fluorescence levels. The yield of each component paralleled the changes in their respective lifetimes, indicating the presence of well-connected PS II reaction centres favouring energy transfer between each other. These changes show that variable chlorophyll fluorescence (Fv) does not arise from one specific origin. The extent of the modifications and the observed relationship between component lifetime and yield, on closing PS II reaction centres, cannot be explained by either the delayed fluorescence (charge recombination) hypothesis of Klimov and co-workers (Klimov, V.V. et al. (1978) Dokl. Akad. Nauk. SSSR 242, 1204–1207) or the proposed changes and origins put forward by Holzwarth and co-workers (Holzwarth, A.R. (1986) Photochem. Photobiol. 43, 707–725; Holzwarth, A.R. et al. (1985) Biochim. Biophys. Acta 807, 155–167).  相似文献   

12.
Lipophilic metal chelators inhibit various energy-transducing functions of chloroplasts. The following observations were made 1. Photophosphorylation coupled to any known mode of electron transfer, i.e. whole-chain noncyclic, the partial noncyclic Photosystem I or Photosystem II reactions, or cyclic, is inhibited by several lipophilic chelators, but not by hydrophilic chelators. 2. The light- and dithioerythritol-dependent Mg2+-ATPase was also inhibited by the lipophilic chelators. 3. Electron transport through either partial reaction. Photosystem I or Photosystem II was not inhibited by lipophilic chelators. Whole-chain coupled electron transport was inhibited by bathophenanthroline, and the inhibition was not reversed by uncouplers. The diketone chelators diphenyl propanedione and nonanedione inhibited the coupled, whole-chain electron transport and the inhibition was reversed by uncouplers, a pattern typical of energy transfer inhibitors. The electron transport inhibition site is localized in the region of platoquinone leads to cytochrome f. This inhibition site is consistent with other recent work (Prince et al. (1975) FEBS Lett. 51, 108 and Malkin and Aparicio (1975) Biochem. Biophys. Res. Commun. 63, 1157) showing that a non-heme iron protein is present in chloroplasts having a redox potential near + 290 mV. A likely position for such a component to function in electron transport would be between plastoquinone and cytochrome f. just where our data suggests there to be a functional metalloprotein. 4. Some of the lipophilic chelators induce H+ leakiness in the chloroplast membrane, making interpretation of their phosphorylation inhibition difficult. However, 1-3 mM nonanedione does not induce significant H+ leakiness, while inhibiting ATP formation and the Mg2+-ATPase. Nonanedione, at those concentrations, causes a two- to four-fold increase in the extent of H+ uptake. 5. These results are consistent with, but do not prove, the involvement of a non-heme iron or a metalloprotein in chloroplast energy transduction.  相似文献   

13.
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A0, has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the “primary electron donor,” P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of ∼ 7 ps and ∼ 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A0: both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A0. We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A0 → AA0 charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A0 axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A0.  相似文献   

14.
The cyanobacterium Chlorogloea fritschii loses Photosystem II activity, measured by delayed fluorescence and oxygen evolution, during dark heterotrophic growth, but retains Photosystem I, measured as light induced EPR signals. Following transition to the light, Photosystem II recovers in two stages, the first of which does not require protein synthesis. New Photosystem I reaction centres are not synthesised until after net chlorophyll synthesis has commenced. Carbon dioxide fixation recovery commences immediately, the initial rate being unaffected by chloramphenicol. The recovery of carbon dioxide fixation is not directly related to oxygen evolution rate and is only inhibited slightly by 3-(3,4-dichlorophyenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone.  相似文献   

15.
Fluorescence and energy transfer properties of bean leaves greened by brief, repetitive xenon flashes were studied at −196 °C. The bleaching of P-700 has no influence on the yield of fluorescence at any wavelength of emission. The light-induced fluorescence yield changes which are observed in both the 690 and 730 nm emission bands in the low temperature fluorescence spectra are due to changes in the state of the Photosystem II reaction centers. The fluorescence yield changes in the 730 nm band are attributed to energy transfer from Photosystem II to Photosystem I. Such energy transfer was also confirmed by measurements of the rate of photooxidation of P-700 at −196 °C in leaves in which the Photosystem II reaction centers were either all open or all closed. It is concluded that energy transfer from Photosystem II to Photosystem I occurs in the flashed bean leaves which lack the light-harvesting chlorophyll a/b protein.  相似文献   

16.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

17.
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at - 196 degrees C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5mMMgCl2 which presumably changes the distrubution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, alpha, being the fraction distributed to Photosystem I, and beta, the fraction to Photosystem II to Photosystem I, KT(II yields I). The data, analyzed within the context of the model, permit a direct comparison of alpha and kt(II yields I) in the absence (minus) and presence (+) of Mg-2+ :alpha minus/alpha-+ equals 1.2 and k-minus t)II yields I)/K-+T(II yields I) equal to 1.9. If the criterion that alpha + beta equal to 1 is applied absolute values can be calculated: in the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg-2+, alpha-minus equal to 0.32 and phi t(II yields I) varied from 0.12 to 0.28. The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvesting chlorophyll of Photosystem II to Photosystem I, kt(II yields I), and a transfer from the reaction centers of Photosystem II to Photosystem I, kt(II yields I). In that case alpha-minus/alpha+ equal to 1.3, k-minus t(II yields I)/k+ t(II yields I)equal to 1.3 and k-minus t(II yields I) equal to 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

18.
Photosystem 2 photochemical efficiency, measured as the rate of Qa reduction, was observed to be inhibited by preillumination with single turnover flashes, whilst Fo and Fm were not affected. Such inhibition was reversed by the uncoupler nigericin or by incubating the thylakoids in the dark for ca. 2 min after the preillumination. The presence of ATP in micromolar concentrations increased the time of dark recovery from the inhibition. The inhibition of fluorescence rise was not changed when 70% of the excitation energy available in the antenna was quenched by dinitrobenzene. Quantitative analysis of the observed fluorescence induction indicates that this phenomenon is due to the inhibition of the photochemical reaction itself. Uncouplers such NH4Cl were unable to reverse the inhibition and only a few flashes of saturating intensity (10 or less) were required for the onset of it. This suggests that protons localised in domains rather than a pH gradient between the thylakoid lumen bulk solution and the external one are involved in this regulation of PS 2 efficiency.Abbreviations Chl- chlorophyll - cyt b 559- cytochrome b 559 - DCMU- 3-(3,4 dichlorophenyl)-1, 1 dimethylurea - DMBQ- dimethylbenzoquinone - DNB- dinitrobenzene - - electric potential difference - Fo- minimal fluorescence level measured with open reaction centres - Fm- maximal fluorescence level measured with closed reaction centres - Fv- variable fluorescence, defined as Fm-Fo - FWHM- full width at half maximum transmission - HA- hydroxylamine - MV- methylviologen - P680- pigment involved in the charge separation in Photosystem 2 - pheo- pheophytin - PS 1- Photosystem 1 - PS 2- Photosystem 2 - Qa- primary quinone acceptor of Photosystem 2 - Qb- secondary quinone acceptor of Photosystem 2  相似文献   

19.
Book review     
The fluorescence yield for 694 nm excitation in a Photosystem I-200 particle is significantly lower than that for 665 nm excitation. This supports the previous suggestion, based on a thermodynamic analysis of absorption and emission spectra, that thermal equilibration in the 690–700 nm spectral interval is perturbed, presumably by primary photochemistry [Croce et al. (1996) Biochem 35: 8572–8579]. This equilibrium perturbation was used in the present study as a novel fit parameter in numerical simulations aimed at describing the kinetic/thermodynamic properties of exciton flow and primary photochemistry in PS I. To this end a four energy level scheme was developed which satisfactorily described all the fit parameters, including that of the equilibrium perturbation. An important characteristic which distinguished this model from other model studies is the presence of a number of chlorophyll molecules with absorption maximum near 695 nm, tightly coupled to P700. The main conclusions are: (I) about six chlorophyll molecules absorbing near 695 nm are tightly coupled to P700, in close agreement with the recent crystallographic structure for the Photosystem I core [Krauß et al. (1996); Nature Struct Biol 3: 965–973]; (II) energy transfer from the bulk pigments to the P700 core pigments is slow; (III) analysis of the most physically straightforward model indicates that the primary photochemical charge separation rate is very high (kpc 2.5 ps-1), though it is possible to simulate the equilibrium perturbation with lower kpc values assuming a large free energy decrease in the excited state of P700; (IV) the red spectral forms slow down reaction centre trapping by a 2–3 fold factor.  相似文献   

20.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号