首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的:探讨高压氧对急性CO中毒大鼠脑内源性神经干细胞的影响,分析HBO治疗急性CO中毒脑损伤的机制。方法:建立急性CO中毒大鼠模型,给予高压氧(HBO)治疗后,H-E染色观察大鼠脑组织病理学变化,免疫组织化学方法检测大鼠脑内神经干细胞(nestin)和星形胶质细胞(GFAP)的表达。结果:H-E染色标本上,对照组脑内神经元形态正常,染毒组脑皮质出现大量变性坏死细胞,海马锥体细胞层稀疏,HBO组坏死细胞明显减少。免疫组化结果显示对照组nestin和GFAP表达数量形态均正常,染毒组nestin表达增加,但无统计学意义,GFAP形态数量发生改变,HBO组nestin表达明显增加,且在大脑皮层可见部分nestin阳性细胞和nestin-GFAP双阳性细胞;GFAP表达趋于正常。结论:急性CO中毒作为脑损伤因素可轻度激活大鼠脑内源性神经干细胞,并使星形胶质细胞增生变形、神经元变性坏死,HBO治疗可减轻星形胶质细胞损伤,明显激活内源性神经干细胞,并促使其增殖、迁移和分化。提示HBO可能通过激活神经干细胞起治疗作用。  相似文献   

2.
目的:探讨胎儿胰岛源性Nestin(神经上皮干细胞蛋白)阳性干细胞分化为多巴胺能神经元的潜能。方法:用胶原酶消化法分离胎儿胰岛,贴壁培养后获得增殖力旺盛的细胞;用免疫组化法、免疫荧光法分别检测其增殖细胞核抗原(PCNA)及神经干细胞标志物Nestin的表达;用流式细胞术测定Nestin阳性细胞的比例;经N2培养液筛选后,分别用SHH(sonichedgehog)蛋白、成纤维细胞生长因子(FGF)8、胶质细胞源性神经营养因子(GDNF)和脑源性神经营养因子(BDNF)向多巴胺能神经元定向诱导,检测诱导细胞的多巴胺能神经元标志酪氨酸羟化酶(TH)和芳香左旋氨基酸脱羧酶(AADC)的表达情况。结果:免疫荧光显示,从胎儿胰岛分离的干细胞表达PCNA和Nestin;流式细胞术检测Nestin阳性率达13.74%;筛选后向神经细胞定向诱导分化,细胞表达TH和AADC。结论:从胎儿胰岛中可以分离出Nestin阳性的神经干细胞,该细胞具有向多巴胺能神经元定向分化的能力。  相似文献   

3.
目的探讨人胚胎干细胞分化为神经干细胞过程中,经拟胚体(embryonic body,EB)法和直接分化法的不同效率。方法人胚胎干细胞常规培养消化后,分为两组:A组,经EB法分化;B组,添加noggin和ITSFn直接分化法。倒置相差显微镜观察细胞形态变化,RT-PCR检测细胞各阶段标志物,免疫荧光及流式细胞仪观察两组细胞Nestin阳性细胞率。神经干细胞继续分化,免疫荧光、RT-PCR法检测MAP2、GFAP表达。结果RT-PCR检测到OCT4、nestin表达。B组nestin阳性细胞率明显高于A组,差异有统计学意义(P〈0.01),且诱导周期短于A组。神经干细胞继续分化,得到不同数量的神经元和胶质细胞,MAP2、GFAP分别阳性。结论在体外采用定向分化诱导,人胚胎干细胞不经EB,可直接定向分化为神经干细胞,且诱导效率比EB法高。因此直接分化法是一种经济实用的诱导方法。  相似文献   

4.
用神经生长因子(nervegrowthfactor,NGF)分别处理原代培养的新生大鼠大脑皮质和中脑腹侧部神经元,应用免疫组织化学和原位杂交双重标记方法,观察不同时间NGF处理的神经元表达原癌基因c-junmRNA的情况。结果发现,神经特异性烯醇化酶(neuronspecificenolase,NSE)阳性的大脑皮层神经细胞在NGF处理15分钟即可表达c-junmRNA,2小时达高峰,4小时后开始下降,到8小时后基本消失.未经NGF处理的大鼠大脑皮层神经细胞不表达c-junmRNA;酪氨酸羟化酶(tyrosinehydroxylase,TH)阳性的中脑多巴胺能(Dopaminergic,DA)神经元经NGF处理也不表达c-jun基因。提示NGF与其受体结合可以激活神经细胞快速,短暂的一过性表达c-jun基因,作为第三信使,调节从细胞质膜到核的信号传递,同时也间接证明了新生大鼠大脑皮层神经细胞膜上存在神经生长因子受体(nervegrowthfactorreceptor,NGFR),而中脑DA神经细胞对NGF无应答反应。  相似文献   

5.
目的用生物芯片技术分析胚胎干细胞定向分化为神经干细胞过程中microRNA(miRNA)的表达变化,筛选调控的分化的miRNA,研究分化调控机制。方法胚胎干细胞在含LIF培养基中培养3d后,采用经典5步培养方法定向诱导向神经干细胞分化,采用nestin作为神经干细胞标记进行鉴定,送检胚胎干细胞及神经干细胞,提取总RNA以及小分子RNA,经荧光标记后与miRNA基因芯片杂交,获得胚胎干细胞诱导前后miRNA表达谱。结果1)胚胎干细胞在含LIF培养过程中保持未分化状态,Oct-4、碱性磷酸酶表达阳性;2)经典五步法诱导胚胎干细胞定向分化为神经干细胞,nestin阳性细胞为85%;3)通过基因微阵列分析,有90个miRNA的改变显著,其中68个表达上调,22个表达下调。结论miRNA可能对胚胎干细胞定向分化为神经干细胞过程起到关键作用。  相似文献   

6.
目的研究大脑皮层神经干细胞定向分化为神经元过程中钙调蛋白的表达及意义.方法采用细胞培养、免疫细胞化学方法(SABC法)观察钙调蛋白在神经干细胞定向分化过程中不同时段的表达情况.采用计算机图像分析技术对不同时段分化神经元中钙调蛋白的平均积分光密度进行定量测定.结果在神经干细胞定向分化为神经元的过程中,钙调蛋白于细胞核及核周呈阳性表达,随分化神经元的生长细胞核阳性表达逐渐减弱而胞浆增强,同时可见阳性反应物伸入树突及轴突.结论新生大鼠大脑皮层神经干细胞定向分化为神经元过程中,钙调蛋白的表达对神经干细胞定向分化的神经元的生长和发育起着重要作用.  相似文献   

7.
目的观察叶酸联合成体神经干细胞对创伤性脑损伤大鼠的治疗作用,探讨其可能作用机制。方法 120只Wistar大鼠随机分为6组,正常组,模型组,假手术组,叶酸注射组,成体神经干细胞移植组,成体神经干细胞移植+叶酸注射组。倒置显微镜下观察神经干细胞形态学变化;流式细胞仪检测神经干细胞表面标记物CD105、CD45、CD44、CD29的表达;免疫荧光法检测神经元特异性烯醇酶(NSE成熟神经元的特异性标志)、胶质纤维酸性蛋白(GFAP胶质细胞的标记物)的表达;平衡木实验检测大鼠运动协调与整和能力;Morris水迷宫实验测试各组大鼠的学习记忆能力;HE染色及Brdu免疫组化实验观察脑组织形态学变化;酶联免疫吸附试验检测大鼠脑组中脑源性神经生长因子(BDNF)、神经生长因子(NGF)的表达;蛋白质印迹法检测脑组织中凋亡相关蛋白BCL-2、Bax、Caspase-3的表达。结果分离所得细胞能在体外传代培养,流式细胞仪检测发现细胞阳性表达CD44、CD29,阴性表达CD105、CD45,细胞经胎牛血清诱导分化后能形成NSE或GFAP阳性细胞。实验表明,叶酸与成体神经干细胞干预创伤性脑损伤大鼠模型后能显著改善其行为学变化,减轻脑组织的炎症反应,恢复受损神经细胞,增加脑组织内BDNF、NGF的含量,上调BCL-2的表达,下调Bax、Caspase-3的表达。结论叶酸联合成体神经干细胞干预创伤性脑损伤大鼠能显著改善中枢神经功能,对维持神经元微环境稳态具有重要的作用。  相似文献   

8.
山羊胚胎大脑皮层神经干细胞分离、培养与鉴定   总被引:1,自引:0,他引:1  
目的 :从山羊胚胎大脑皮层中分离培养并鉴定神经干细胞。方法 :利用NBS培养和单细胞克隆技术在山羊胚胎大脑皮层中分离出具有单细胞克隆能力的细胞 ,并进行培养、传代、分化观察 ,采用免疫组化检测克隆细胞的神经巢蛋白 (Nestin)抗原和分化后特异性成熟神经细胞抗原的表达。结果 :从胚龄 2 4~ 30d的新鲜山羊胚胎大脑皮层中成功分离出神经干细胞 ,该细胞具有连续克隆能力 ,可传代培养 ,表达神经巢蛋白抗原。分化后的细胞表达神经元细胞、胶质细胞和少突胶质细胞的特异性抗原。结论 :山羊胚胎大脑皮层中存在具有自我更新能力和多分化潜能的神经干细胞。  相似文献   

9.
探讨海马神经干细胞(neuralstemcells,NSCs)在体外分离扩增和诱导分化的可行性。无菌条件下分离新生(24h)SD大鼠海马神经干细胞,采用无血清培养和胎牛血清诱导分化。免疫荧光染色技术分别检测诱导前细胞巢蛋白(Nestin)的表达,以及分化细胞的神经元特异性烯醇化酶(neuron specific enolase,NSE)、胶质纤维酸性蛋白(glialfibrillaryacidicprotein,GFAP)的表达,以鉴定细胞类型。流式细胞仪检测神经干细胞分化前后增殖能力的变化。结果显示:从乳鼠海马分离培养的细胞生长状态良好,具有克隆增殖能力,并呈Nestin表达阳性,分化后可出现NSE及GFAP表达阳性的细胞。流式细胞仪检测显示:诱导前,细胞增殖活跃,S+G2/M期细胞为(36.27±1.99)%,而分化各阶段(3,7,10d)S+G2/M期细胞比例与诱导前(Ctrl)相比则明显下降(尸〈0.05),分别为(26.39±1.10)%、(26.33±1.33)%和(24.54±1.12)%。这些结果表明乳鼠海马存在神经干细胞,并具有自我更新和多向分化的潜能,可用于基础和临床的相关研究。  相似文献   

10.
先前的研究已经证实,阿魏酸钠诱导分化的PC12细胞裂解液的无细胞滤液具有改善抑郁症样模型大鼠的行为学障碍、上调其海马和大脑皮质神经生长因子(nerve growth factor,NGF)和脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)的表达、增加海马神经干细胞(neural stem cells,NSCs)/神经前体细胞(neural progenitor cells)增殖的效果。该研究的目的在于探讨神经干细胞裂解液的无细胞滤液(cell-free filtrate ofneural stem cell lysates,FNSCL)脑室内注射促进谷氨酸盐诱导的成年小鼠兴奋性神经元损伤修复的可能性。成年小鼠谷氨酸单钠(monosodiumglutamate,MSG,2.0g/(kg·d))灌胃,连续10日,造成兴奋性神经元损伤模型。自孕15 d的昆明种小鼠取胎脑,分离、培养神经干细胞,免疫细胞化学法检测巢蛋白(nestin)抗原,制备神经干细胞裂解液的无细胞滤液。MSG+NSCs组动物在MSG灌胃后接收脑室内NSCs移植,MSG+FNSCL组动物在MSG灌胃...  相似文献   

11.
The nerve growth factor receptor TrkA (tropomyosin-related kinase receptor) participates in the survival and differentiation of several neuronal populations. The C-terminal tail of TrkA contains a PPXY motif, the binding site of the E3 ubiquitin-ligase Nedd4-2 (neural precursor cell expressed, developmentally down-regulated 4-2). In order to analyze the role of Nedd4-2 ubiquitination on TrkA function, we generated three TrkA mutants, by introducing point mutations on conserved hydrophobic amino acids - Leu784 and Val790 switched to Ala. TrkA mutants co-localized and co-immunoprecipitated more efficiently with Nedd4-2 and consequently a strong increase in the basal multimonoubiquitination of the mutant receptors was observed. In addition, we found a decrease in TrkA abundance because of the preferential sorting of mutant receptors towards the late endosome/lysosome pathway instead of recycling back to the plasma membrane. Despite the reduction in the amount of membrane receptor caused by the C-terminal changes, TrkA mutants were able to activate signaling cascades and were even more efficient in promoting neurite outgrowth than the wild-type receptor. Our results demonstrate that the C-terminal tail hydrophobicity of TrkA regulates Nedd4-2 binding and activity and therefore controls receptor turnover. In addition, TrkA multimonoubiquitination does not interfere with the activation of signaling cascades, but rather potentiates receptor signaling leading to differentiation.  相似文献   

12.
BACKGROUND: The function and survival of pancreatic beta-cells strongly depend on glucose concentration and on autocrine secretion of peptide growth factors. NGF and its specific receptors TrkA and p75NTR play a pivotal role in islet survival and glucose-dependent insulin secretion. We therefore investigated whether or not glucose concentration influences expression of TrkA and p75NTR in rat islets and in INS-1E beta-cells at the mRNA and protein level (INS-1E). METHODS: Gene expression of the NGF receptors TrkA and p75NTR but also of the metabolic gene liver-type pyruvate kinase (L-PK) and the neurotrophin receptors TrkB and TrkC was studied by semi-quantitative PCR and by real-time PCR in islets and INS-1E beta-cells. RESULTS: In rat islets, high glucose exposure (25 mmol/l) increased gene expression of TrkA, p75NTR and L-PK. Expression of TrkA, p75NTR and L-PK reflected insulin secretion at the respective glucose concentration. In rat INS-1E insulinoma cells, expression of L-PK and p75NTR was suppressed by low glucose as in the islets, while expression of TrkA was strongly increased by low glucose levels and thus was regulated differently than in islets. Expression of TrkB and TrkC was not regulated by glucose concentration at all. TrkA protein was regulated in the same fashion as its mRNA expression, while p75NTR protein was not significantly regulated within 24 h. CONCLUSION: Glucose interacts with gene expression of TrkA and p75NTR that are strongly involved in beta-cell growth and glucose-dependent insulin secretion. The fact that TrkA expression is regulated the opposite way in islets and in INS-1E beta-cells might reflect their specific grade of differentiation and tendency to proliferate.  相似文献   

13.
Vertebrate homologues of musashi have recently been referred to as neural stem cell markers because of their expression patterns and RNA-binding interactions. In the context of the notch signaling pathway, Musashi-1 (Msi-1) is a regulator of neural cell generation, cooperating with notch to maintain mitosis. In an effort to identify definitive stem cell markers of the neural retina, a portion of the Msi-1 cDNA was cloned, and the expression of Msi-1 in the chick eye was analyzed. Using an Msi-1-specific antibody and RNA probe, we show that expression of Msi-1 in the early neural tube is consistent with neural stem identity. In the neural retina, expression starts shortly before embryonic day 3 (E3) and continues up to and including E18. A BrdU incorporation assay shows Msi-1 to be found in both proliferating and differentiating cells of E5 neural retina. At E8 (when proliferation is complete in the fundus of the retina) and E18 (mature retina) Msi-1 expression was found in the ciliary marginal zone (CMZ) as well as in a subpopulation of differentiated cells, including photoreceptors and ganglion cells.  相似文献   

14.
The c‐Jun N‐terminal kinase (JNK) is well known to play an important role in cell death signaling of the p75 neurotrophin receptor. However, little has been studied about a role of JNK in the signaling pathways of the tropomyosin‐related kinase A (TrkA) neurotrophin receptor. In this study, we investigated JNK inhibitor SP600125‐controlled TrkA‐dependent targets by proteomic analysis to better understand an involvement of JNK in TrkA‐mediated signaling pathways. PDQuest image analysis and protein identification results showed that hnRNP C1/C2, α‐tubulin, β‐tubulin homolog, actin homolog, and eIF‐5A‐1 protein spots were upregulated by ectopic expression of TrkA, whereas α‐enolase, peroxiredoxin‐6, PROS‐27, HSP70, PP1‐gamma, and PDH E1‐alpha were downregulated by TrkA, and these TrkA‐dependent upregulation and downregulation were significantly suppressed by SP600125. Notably, TrkA largely affected certain PTM(s) but not total protein amounts of the SP600125‐controlled TrkA‐dependent targets. Moreover, SP600125 strongly suppressed TrkA‐mediated tyrosine phosphorylation signaling pathways as well as JNK signaling, indicating that SP600125 could function as a TrkA inhibitor. Taken together, our results suggest that TrkA could play an important role in the cytoskeleton, cell death, cellular processing, and glucose metabolism through activation or inactivation of the SP600125‐controlled TrkA‐dependent targets.  相似文献   

15.
目的:探讨移植NAAG合酶(NAAG synthetase,NAAGS)基因修饰的神经干细胞(Neural Stem Cells,NSCs)能否促进创伤性颅脑损伤大鼠神经功能的恢复。方法:利用电穿孔转染大鼠NSCs,通过脑立体定向仪分别将PBS(模型组)、NSCs(NSCs组)、转基因NSCs(NAAGS+NSCs组)移植到创伤性颅脑损伤(Traumatic Brain Injury,TBI)大鼠局部损伤灶边缘,通过NSS评分评价移植后大鼠神经功能的变化以及用TUNEL法检测NSCs的凋亡情况,并采用放射免疫法分析脑组织中促炎因子水平。结果:Nss评分结果显示NAAGs+NSCs组和NSCs组在第7、14、21天神经功能评分均低于模型组(P〈0.05);NAAGS+NSCs组在第14和21天神经功能评分低于NSCs组(P〈0.05);在各时间点细胞移植组比模型组的神经细胞凋亡数明显减少;转基因NSCs移植能明显降低TBI脑组织中促炎因子水平。结论:转基因NSCs移植后可以合成NAAGS促进TBI大鼠神经功能的恢复。  相似文献   

16.
Nerve growth factor (NGF) binding to p75(NTR) influences TrkA signaling, yet the molecular mechanism is unknown. We observe that NGF stimulates TrkA polyubiquitination, which was attenuated in p75(-/-) mouse brain. TrkA is a substrate of tumor necrosis factor receptor-associated factor 6 (TRAF6), and expression of K63R mutant ubiquitin or an absence of TRAF6 abrogated TrkA polyubiquitination and internalization. NGF stimulated formation of a TrkA/p75(NTR) complex through the p62 scaffold, recruiting the E3/TRAF6 and E2/UbcH7. Peptide targeted to the TRAF6 binding site present in p62 blocked interaction with TRAF6 and inhibited ubiquitination of TrkA, signaling, internalization, and NGF-dependent neurite outgrowth. Mutation of K485 to R blocked TRAF6 and NGF-dependent polyubiquitination of TrkA, resulting in retention of the receptor on the membrane and an absence in activation of specific signaling pathways. These findings reveal that polyubiquitination serves as a common platform for the control of receptor internalization and signaling.  相似文献   

17.
SH2-B is required for nerve growth factor-induced neuronal differentiation   总被引:15,自引:0,他引:15  
Nerve growth factor (NGF) is essential for the development and survival of sympathetic and sensory neurons. NGF binds to TrkA, activates the intrinsic kinase activity of TrkA, and promotes the differentiation of pheochromocytoma (PC12) cells into sympathetic-like neurons. Several signaling molecules and pathways are known to be activated by NGF, including phospholipase Cgamma, phosphatidylinositol-3 kinase, and the mitogen-activated protein kinase cascade. However, the mechanism of NGF-induced neuronal differentiation remains unclear. In this study, we examined whether SH2-Bbeta, a recently identified pleckstrin homology and SH2 domain-containing signaling protein, is a critical signaling protein for NGF. TrkA bound to glutathione S-transferase fusion proteins containing SH2-Bbeta, and NGF stimulation dramatically increased that binding. In contrast, NGF was unable to stimulate the association of TrkA with a glutathione S-transferase fusion protein containing a mutant SH2-Bbeta(R555E) with a defective SH2 domain. When overexpressed in PC12 cells, SH2-Bbeta co-immunoprecipitated with TrkA in response to NGF. NGF stimulated tyrosyl phosphorylation of endogenous SH2-Bbeta as well as exogenously expressed GFP-SH2-Bbeta but not GFP-SH2-Bbeta(R555E). Overexpression of SH2-Bbeta(R555E) blocked NGF-induced neurite outgrowth of PC12 cells, whereas overexpression of wild type SH2-Bbeta enhanced NGF-induced neurite outgrowth. Overexpression of either wild type or mutant SH2-Bbeta(R555E) did not alter tyrosyl phosphorylation of TrkA, Shc, or phospholipase Cgamma in response to NGF or NGF-induced activation of ERK1/2, suggesting that SH2-Bbeta may initiate a previously unknown pathway(s) that is essential for NGF-induced neurite outgrowth. Taken together, these data indicate that SH2-Bbeta is a novel signaling molecule required for NGF-induced neuronal differentiation.  相似文献   

18.
We investigated the contributions of forebrain, brain stem, and spinal neural circuits to interleukin (IL)-1beta-induced sympathetic nerve discharge (SND) responses in alpha-chloralose-anesthetized rats. Lumbar and splenic SND responses were determined in spinal cord-transected (first cervical vertebra, C1), midbrain-transected (superior colliculus), and sham-transected rats before and for 60 min after intravenous IL-1beta (285 ng/kg). The observations made were the following: 1) lumbar and splenic SND were significantly increased after IL-1beta in sham C1-transected rats but were unchanged after IL-1beta in C1-transected rats; 2) intrathecal administration of DL-homocysteic acid (10 ng) increased SND in C1-transected rats; 3) lumbar and splenic SND were significantly increased after IL-1beta in sham- but not midbrain-transected rats; and 4) midbrain transection did not alter the pattern of lumbar and splenic SND, demonstrating the integrity of brain stem sympathetic neural circuits after decerebration. These results demonstrate that an intact forebrain is required for mediating lumbar and splenic sympathoexcitatory responses to intravenous IL-1beta, thereby providing new information about the organization of neural circuits responsible for mediating sympathetic-immune interactions.  相似文献   

19.
Role of phospholipase D1 in neurite outgrowth of neural stem cells   总被引:2,自引:0,他引:2  
Employing neural stem cells from the brain cortex of E12 rat embryos, we investigated the possible role of phospholipase D (PLD) in the synaptogenesis and neurite formation of neural cells during differentiation. Expression level of PLD1 increased during neuronal differentiation of the neural stem cells, resulting in increased PLD activity. Expression level of synapsin I, a marker of synaptogenesis, also increased as the differentiation of neural stem cells progressed. To figure out the effect of PLD on synapsin I expression, we treated the neural stem cells with phorbol myristate acetate (PMA) to stimulate PLD activity. Increased PLD activity induced by PMA treatment resulted in elevated synapsin I expression and neurite outgrowth during neuronal differentiation. To further confirm the role of PLD in neurite outgrowth, we transfected the dominant-negative form of rat PLD1 cDNA (DN-rPLD1) into neural stem cells to downregulate PLD activity. Overexpression of DN-rPLD1 showed the complete inhibition of neurite outgrowth of neural stem cells under differentiation condition. While transfection of DN-rPLD1 did not affect the synapsin I expression, overexpression of rPLD1 resulted in increased synapsin I expression of the neural cells. These results suggest that PLD1 plays a critical role in neurite outgrowth during differentiation of the neural stem cells. In conclusion, this is the first evidence to show that PLD1 acts as an important regulator of neurite outgrowth in neural stem cell by promoting neuronal differentiation via increase of synapsin I expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号