首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We have used in vivo microdialysis in anaesthetised rats to investigate whether somatostatin (SRIF) can play a neuromodulatory role in the striatum. When 100 n M SRIF was retrodialysed for 15 min, it increased concentrations of dopamine (DA) by 28-fold, γ-aminobutyric acid (GABA) by eightfold, and glutamate (Glu) by sixfold as well as those of aspartate (Asp) and taurine (Tau). These effects were both calcium- and tetrodotoxin-sensitive. Lower (10 or 50 n M ) and higher (1 µ M ) SRIF concentrations were less effective. Rapid sampling showed that whereas Asp and Glu concentrations were raised for 3 min at the start of 15-min SRIF infusions, those of DA were increased for 12 min. A second 15-min application of 100 n M SRIF given 135 min after the first application failed to increase transmitter release. An NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (200 µ M ), blocked SRIF (100 n M )-evoked Asp, Glu, Tau, and GABA release and reduced that of DA. An α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (100 µ M ), blocked SRIF-induced DA and Tau release and reduced that of Asp, Glu, and GABA. These results show that SRIF increases DA, Glu, Asp, GABA, and Tau release in the rat striatum and suggest that its actions on DA and GABA release are mainly mediated through increased excitatory amino acid release.  相似文献   

2.
Abstract: Several amphetamine analogues are reported to increase striatal glutamate efflux in vivo, whereas other data indicate that glutamate is capable of stimulating the efflux of dopamine (DA) in the striatum via a glutamate receptor-dependent mechanism. Based on these findings, it has been proposed that the ability of glutamate receptor-blocking drugs to antagonize the effects of amphetamine may be explained by their capacity to inhibit DA release induced by glutamate. To examine this possibility further, we investigated in vivo the ability of glutamate antagonists to inhibit DA release induced by either methamphetamine (METH) or 3,4-methylenedioxymethamphetamine (MDMA). Both METH and MDMA increased DA efflux in the rat striatum and, in animals killed 1 week later, induced persistent depletions of DA and serotonin in tissue. Pretreatment with MK-801 or CGS 19755 blocked the neurotoxic effects of METH and MDMA but, did not significantly alter striatal DA efflux induced by either stimulant. Infusion of 6-cyano-7-nitroquinoxaline-2,3-dione into the striatum likewise did not alter METH-induced DA overflow, and none of the glutamatergic antagonists affected the basal release of DA when given alone. The findings suggest that the neuroprotective effects of NMDA antagonists do not involve an inhibition of DA release, nor do the data support the proposal that glutamate tonically stimulates striatal DA efflux in vivo. Whether phasic increases in glutamate content might stimulate DA release, however, remains to be determined.  相似文献   

3.
In vivo microdialysis was used in conjunction with a novel dual-label preloading method, to monitor changes in extracellular levels of gamma-aminobutyric acid (GABA) and glutamate in the striatum of conscious, unrestrained rats. [3H]GABA and [14C]glutamate were applied in the dialysis stream for a preloading period of 30 min, after which dialysis perfusion was continued for up to 6 h, and dialysate samples were collected for scintillation counting. Veratridine (Vtd: 100 microM in the dialysate) caused significant rises in both 3H and 14C content measured in the dialysates, the majority of which remained associated with the preload GABA and glutamate, respectively. The Vtd-stimulated release of GABA and glutamate measured in this way was blocked by tetrodotoxin and was Ca2+ dependent. Thus, by reproducing results obtained using other techniques, we have shown that the preloading method provides a quick and reliable method for measuring the effects of drugs on the release of neurotransmitter GABA and glutamate in vivo by dyalisis. It should enable sample times as low as 1 min to be used, thus allowing resolution of transient stimulated responses taking place over a time course of minutes.  相似文献   

4.
Abstract: Ischemic stroke was induced in the Mongolian gerbil by left common carotid ligation. No change in uptake of [3H]dopamine, [3H]γ-aminobutyric acid ([3H]GABA), or [14C]glutamate in synaptosomes obtained from the ischemic hemisphere was observed for up to 8 h. At 16 h after ligation, marked decrements in uptake were observed in animals showing hemiparesis: Uptake values expressed as a percent of the corresponding control hemisphere were 15.2% for dopamine, 28.0% for GABA, and 47.5% for glutamate. The differential sensitivity of dopamine terminals compared with glutamate terminals was highly significant. Separate experiments performed with synaptosomes isolated from the corpus striatum showed that the greater sensitivity to damage was intrinsic to the dopamine nerve terminal and not the result of regional variations in ischemic damage in brain. No bilateral effect of ischemia on dopamine uptake was evident. In animals exhibiting milder behavioral deficits (circling), a smaller and comparable decrement in uptake of dopamine, GABA, and glutamate was evident at 16 h, whereas animals not affected behaviorally showed no decrement at 16 h. Following uptake, the subsequent fractional release of neurotransmitter stimulated by 60 mM-potassium ions was not affected at any time point studied. Therefore, the loss in uptake at 16 h probably represents overt destruction of nerve terminals. Experiments with urethane used in place of pentobarbital for anesthesia during carotid occlusion showed that protection by pentobarbital was not a factor in the delayed response to ischemia. These results show that damage or destruction of nerve terminals is a delayed event following ischemia and that dopamine terminals are intrinsically more sensitive than glutamate terminals.  相似文献   

5.
Abstract: In vivo microdialysis was used in conjunction with a novel dual-label preloading method to monitor changes in extracellular levels of γ-aminobutyric acid (GABA) and glutamate due to N -methyl- d -aspartate (NMDA) infusion in the striatum of conscious, unrestrained rats. [14C]GABA and [3H]glutamate were applied in the dialysis stream for a preloading period of 30 min, after which dialysis perfusion was continued for up to 6 h and dialysate samples were collected for analysis by liquid scintillation spectrometry. NMDA (300 μ M in the dialysate) caused significant rises in both 14C and 3H content measured in the dialysates, the majority of which remained associated with the preloaded GABA and glutamate, respectively. The NMDA-evoked release of both GABA and glutamate was blocked by the specific NMDA receptor antagonist 3-[(±)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (CPP), indicating that the response was receptor mediated. The NMDA-stimulated release of glutamate was also totally abolished by concomitant application of the adenosine agonist 2-chloroadenosine or by prior frontal decortication. However, these two treatments caused little change in NMDA-evoked GABA release. These results show that NMDA causes release of GABA from the striatum in vivo by an NMDA receptor-mediated mechanism and that the majority of this release is not secondary to glutamate release from terminals of the corticostriate pathway. In addition, they confirm the results of previous studies investigating the effect of NMDA on endogenous glutamate release.  相似文献   

6.
Abstract: Intrastriatal microdialysis was used to administer muscarinic drugs in freely moving rats for 40 min at a flow rate of 2 µl/min. Administration of the nonselective agonist pilocarpine at 10 m M increased striatal dopamine release and decreased extracellular GABA and glutamate overflow. Perfusion with the muscarinic M2 antagonist methoctramine at 75 µ M increased extracellular dopamine and glutamate concentrations but exerted no changes on extracellular GABA levels. Intrastriatal administration of the M1 antagonist pirenzepine at 0.05 µ M decreased extracellular dopamine overflow. Application of pirenzepine (0.05 and 5 µ M ) exerted no effects on the measured GABA or glutamate levels. There are thus important differences in applied doses of muscarinic drugs needed to obtain modulatory effects. High doses of agonists are probably needed to superimpose on the background of tonic influences of striatal acetylcholine, whereas antagonists can block the receptors in small doses. We further suggest that M1 receptors might tonically facilitate striatal dopamine release, that M2 receptors might tonically inhibit striatal glutamate efflux, and that acetylcholine does not exert tonic effects on striatal GABA release. The link with the pilocarpine animal model for temporal lobe epilepsy will be discussed.  相似文献   

7.
Abstract: The release processes of endogenous Acetylcholine (ACh), γ-aminobutyric acid (GABA), glutamate (Glu) and glutamine (GLN) were studied in superfused guinea-pig caudatal slices. Basal ACh release remained constant for up to 2 h, while the basal release of GABA, Glu and GLN declined to half or less of its initial values after 1 h of superfusion. Electrical stimulation increased the ACh release by 700–800% and that of GABA by 80% whereas it decreased the output of Glu by 50% and failed to modify the GLN efflux. KCl (25 mM) increased the output of ACh by 400%, that of GABA by approximately 500% and decreased that of Glu by 40%. Substituting of CaCl2 by MgCl2 in the superfusion medium reduced the basal ACh release by 70% whereas no differences were observed in the basal efflux of GABA, Glu and GLN. Under these conditions, no evoked release of ACh or of GABA was detected, following electrical or KCl stimulation. Tetrodotoxin 5 × 10-7 M decreased the basal ACh release by 60% and increased the GABA efflux by 40%. The toxin abolished the stimulus-evoked ACh efflux but scarcely affected that of GABA. These results are consistent with a possible neurotransmitter role of ACh and GABA in the striatum and show some differences in the ionic mechanisms underlying GABA and ACh release.  相似文献   

8.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

9.
Abstract: The effects of local perfusion with the glutamate receptor agonist NMDA and the noncompetitive NMDA receptor antagonist dizolcipine (MK-801) on extracellular dopamine (DA), GABA, and glutamate (Glu) levels in the dorsolateral striatum were monitored using in vivo microdialysis in the halothane-anesthetized rat. In addition, the sensitivity of both the basal and NMDA-induced increases in levels of these neurotransmitter substances to perfusion with tetrodotoxin (TTX; 10?5 M) and a low Ca2+ concentration (0.1 mM) was studied. The results show that the local perfusion (10 min) with both the 10?3 and 10?4 M dose of NMDA increased striatal DA and GABA outflow, whereas only the (10?3 M) dose of NMDA was associated with a small and delayed increase in extracellular Glu levels. The NMDA-induced effects were dose-dependently counteracted by simultaneous perfusion with MK-801 (10?6 and 10?5 M). Both the basal and NMDA (10?3 M)-induced increase in extracellular striatal DA content was reduced in the presence of TTX and a low Ca2+ concentration, whereas both basal and NMDA-stimulated GABA levels were unaffected by these treatments. Both the basal and NMDA-stimulated Glu levels were enhanced following TTX treatment, whereas perfusion with a low Ca2+ concentration reduced basal Glu levels and enhanced and prolonged the NMDA-induced stimulation. These data support the view that NMDA receptor stimulation plays a role in the regulation of extracellular DA, GABA, and Glu levels in the dorsolateral neostriatum and provide evidence for a differential effect of NMDA receptor stimulation on these three striatal neurotransmitter systems, possibly reflecting direct and indirect actions mediated via striatal NMDA receptors.  相似文献   

10.
Abstract: γ-Aminobutyric acid (GABA) was found to induce the release of ascorbic acid from rat striatal homogenates and minces. This release was studied with the use of a rapid supervision system with an on-line amperometric detector that monitors for the presence of easily oxidized substances (i.e., ascorbate, 3,4-dihydroxyphenylethylamine). The release was found to be calcium-independent and depolarization-dependent. This releasable pool of ascorbate could be replenished through nonstereospecific uptake. The releasing action of GABA was mimicked by the GABA agonist, muscimol, and was completely inhibited by the GABA antagonist, picrotoxin. The structural analogues of GABA, β-alanine and γ-hydroxybutyric acid, had no effect. These data indicate that ascorbate release is GABA-receptor mediated and syn-aptically localized.  相似文献   

11.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

12.
Abstract: Disruption of corticostriatal glutamate input in the striatum decreased significantly extracellular striatal glutamate and dopamine levels. Local administration of 300 µ M concentration of excitatory receptor agonist kainic acid increased significantly extracellular striatal dopamine in intact freely moving rats. These findings support the hypothesis that glutamate exerts a tonic facilitatory effect on striatal dopamine release. The effect of kainic acid on extracellular striatal glutamate concentration in intact rats was a biphasic increase. The first glutamate increase can be explained by stimulation of presynaptic kainate receptors present on corticostriatal glutamatergic nerve terminals; the second increase is probably the result of a continuous interaction of the different striatal neurotransmitters after disturbance of their balance. Release of dopamine and glutamate was modulated differently in the intact striatum and in the striatum deprived of corticostriatal input. Dopamine release in the denervated striatum after kainate receptor stimulation was significantly lower than in intact striatum, confirming the so-called cooperativity between glutamate and kainic acid. Loss of presynaptic kainate receptors on the glutamatergic nerve terminals after decortication resulted in a loss of effect of kainic acid on glutamate release in denervated striatum. Aspartate showed no significant changes in this study.  相似文献   

13.
Abstract: In the present study, extracellular levels of the neuropeptide cholecystokinin (CCK), of the monoamine dopamine and its metabolites 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and of the excitatory amino acids glutamate and aspartate were simultaneously monitored by microdialysis in the neostriatum of halothane-anesthetized rats under basal and K+-depolarizing conditions. Extracellular CCK and dopamine levels, but not glutamate and aspartate levels, were decreased by perfusion with a Ca2+-free medium, under both basal and K+-depolarizing conditions. HPLC revealed that the majority of the CCK-like immunoreactivity in the perfusates coeluted with CCK octapeptide. Striatal extracellular CCK levels were decreased by decortication plus callosotomy, with a parallel decrease in glutamate levels. Striatal extracellular levels of dopamine, DOPAC., and HVA were significantly decreased in animals treated previously with a unilateral 6-hydroxydopamine injection into the medial forebrain bundle. In these animals, however, the effect of decortication plus callosotomy on CCK and glutamate levels was not further augmented. Thus, this study supports the hypothesis of a neuronal origin of extracellular CCK and dopamine monitored with microdialysis in the striatum of the rat, and also supports the idea of a partly contralateral origin of corticostriatal CCK and glutamate inputs.  相似文献   

14.
Previous ex vivo studies have provided indirect evidence that the dopamine (DA) metabolite 3-methoxytyramine (3-MT) may be a useful index of DA release in vivo. In the present study, in vivo microdialysis was utilized to assess directly the relationship between extracellular DA and 3-MT in the striatum of rats following a variety of pharmacological manipulations. Apomorphine, a DA receptor agonist, produced a rapid, transient decrease in both DA and 3-MT. Conversely, the DA receptor antagonist haloperidol produced a concomitant increase in extracellular DA and 3-MT. Increases in DA and 3-MT were also noted following the administration of the DA uptake inhibitor, bupropion. Local application of tetrodotoxin resulted in the complete elimination of measurable amounts of DA and 3-MT in the dialysate, gamma-Butyrolactone also greatly decreased DA and 3-MT. Finally, d-amphetamine produced a large increase in DA and 3-MT in animals that had been treated previously with gamma-butyrolactone. The Pearson correlation coefficients for DA and 3-MT following these manipulations ranged from 0.87 to 0.97. These data indicate that interstitial 3-MT is an accurate index of DA release. However, when compared with previous ex vivo findings, the present results also suggest that changes in tissue concentrations of 3-MT may not reliably reflect DA release following certain pharmacological manipulations.  相似文献   

15.
We evaluated whether regional differences in the magnitude of glutamate, gamma-aminobutyric acid (GABA), and glycine release could explain why some regions are vulnerable to ischemia whereas others are spared. By means of the microdialysis technique, the temporal profile of ischemia-induced changes in extracellular levels of glutamate, GABA, and glycine was compared in regions that demonstrate differing susceptibilities to a 10- and 20-min ischemic insult (dorsal hippocampus, anterior thalamus, somatosensory cortex, and dorsolateral striatum). The degree of ischemia (as established by local cerebral blood flow reduction) and the magnitude of histopathological neuronal damage were also evaluated in these regions. The blood flow reduction was severe and uniform in all regions; however, the histopathological outcome illustrated a different pattern. Whereas the CA1 sector of the hippocampus was severely damaged, the thalamus and cortex were relatively spared from both 10 and 20 min of ischemia. Striatal neurons were resistant to a 10-min insult but severely damaged after 20 min of ischemia. Ischemia-induced increase in glutamate and GABA content were of a similar magnitude and temporal profile in all four brain regions. A uniform increase in extracellular glycine levels was also observed in all four brain structures. The postischemic response, however, was different. Glycine levels remained twofold higher than baseline in the hippocampus but fell to baseline in the cortex and thalamus after both 10- and 20-min insults. In the striatum, glycine levels returned to baseline after 10 min of ischemia but remained relatively high after a 20-min insult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Anatoxin-a is an important neurotoxin that acts a potent nicotinic acetylcholine receptor agonist. This characteristic makes anatoxin-a an important tool for the study of nicotinic receptors. Anatoxin-a has been used extensively in vitro experiments, however anatoxin-a has never been studied by in vivo microdialysis studies. This study test the effect of anatoxin-a on striatal in vivo dopamine release by microdialysis.The results of this work show that anatoxin-a evoked dopamine release in a concentration-dependent way. Atropine had not any effect on dopamine release evoked by 3.5 mM anatoxin-a. However, perfusion of nicotinic antagonists mecamylamine and α-bungarotoxin induced a total inhibition of the striatal dopamine release. Perfusion of α7*-receptors antagonists, metillycaconitine or α-bungarotoxin, partially inhibits the release of dopamine stimulated by anatoxin-a. These results show that anatoxin-a can be used as an important nicotinic agonist in the study of nicotinic receptor by in vivo microdialysis technique and also support further in vivo evidences that α7*nicotinic AChRs are implicated in the regulation of striatal dopamine release.  相似文献   

17.
The present study investigated the effects of a striatal lesion induced by kainic acid on the striatal modulation of dopamine (DA) release by mu- and delta-opioid peptides. The effects of [D-Pen2,D-Pen5]-enkephalin (DPDPE) and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO), two highly selective delta- and mu-opioid agonists, respectively, were studied by microdialysis in anesthetized rats. In control animals both opioid peptides, administered locally, significantly increased extracellular DA levels. The effects of DPDPE were also observed in animals whose striatum had been previously lesioned with kainic acid. In contrast to the effects of the delta agonist, the significant increase induced by DAGO was no longer observed in lesioned animals. These results suggest that delta-opioid receptors modulating the striatal DA release, in contrast to mu receptors, are not located on neurons that may be lesioned by kainic acid.  相似文献   

18.
The effect of long-term potentiation (LTP) on endogenous amino acid release from rat hippocampus slices was studied. LTP was induced in vivo by application of a tetanus (200 Hz, 200 ms) to the Schaffer collateral fibers in unanesthetized rats. Endogenous release of glutamate and gamma-aminobutyric acid (GABA) was investigated 60 min after tetanization in CA1 subslices of potentiated and control rats. No significant effects of LTP were observed in basal and K(+)-induced Ca(2+)-independent release components of these amino acids. In contrast, K(+)-induced Ca(2+)-dependent release of both glutamate and GABA increased approximately 100% in slices from potentiated rats. No differences were observed in total content of glutamate and GABA between the subslices from control and LTP animals. These results suggest a persistent increase in the recruitment of the presynaptic vesicular pool of glutamate and GABA during LTP.  相似文献   

19.
Microdialysis probes were inserted bilaterally into the striatum of 7-day-old rat pups (n = 30) to examine extracellular fluid levels of dopamine, its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). The dialysis samples were assayed by HPLC with electrochemical detection. Baseline levels, measured after a 2-h stabilization period, were as follows: dopamine, not detected; DOPAC, 617 +/- 33 fmol/min; HVA, 974 +/- 42 fmol/min; and 5-HIAA, 276 +/- 15 fmol/min. After a 40-min baseline sampling period, 12 animals were exposed to 8% oxygen for 120 min. Hypoxia produced marked reductions in the striatal extracellular fluid levels of both dopamine metabolites (p less than 0.001 by analysis of variance) and a more gradual and less prominent reduction in 5-HIAA levels (p less than 0.02 by analysis of variance), compared with controls (n = 12) sampled in room air. In the first hour after hypoxia, DOPAC and HVA levels rose quickly, whereas 5-HIAA levels remained suppressed. The magnitude of depolarization-evoked release of dopamine (elicited by infusion of potassium or veratrine through the microdialysis probes for 20 min) was evaluated in control and hypoxic animals. Depolarization-evoked dopamine efflux was considerably higher in hypoxic pups than in controls: hypoxic (n = 7), 257 +/- 32 fmol/min; control (n = 12), 75 +/- 14 fmol/min (p less than 0.001 by analysis of variance). These data demonstrate that a brief exposure to moderate hypoxia markedly disrupts striatal catecholamine metabolism in the immature rodent brain.  相似文献   

20.
Glutamate and aspartate are the primary neurotransmitters of projections from motor and premotor cortices to the striatum. Release of glutamate may be modulated by dopamine receptors located on corticostriatal terminals. The present study used microdialysis to investigate the dopaminergic modulation of in vivo striatal glutamate and aspartate release in the striatum of awake-behaving rats. Local perfusion with a depolarizing concentration of K+ through a dialysis probe into the rat striatum produced a significant increase in the release of glutamate, aspartate, and taurine. The D2 agonist LY171555 blocked the K(+)-induced release of glutamate and aspartate, but not taurine, in a concentration-dependent manner. The D1 agonist SKF 38393 did not alter K(+)-induced release of glutamate and taurine, but did significantly decrease aspartate release. Neither agonist had any effect on basal amino acid release. The D2 antagonist (-)-sulpiride reversed the inhibitory effects of LY 171555 on K(+)-induced glutamate release. These results provide in vivo evidence for a functional interaction between dopamine, the D2 receptor, and striatal glutamate release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号