首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Newly synthesized proteins in the endoplasmic reticulum (ER) must fold and assemble correctly before being transported to their final cellular destination. While some misfolded or partially assembled proteins have been shown to exit the ER, they fail to escape the early secretory system entirely, because they are retrieved from post-ER compartments to the ER. We elucidate a mechanistic basis for this retrieval and characterize its contribution to ER quality control by studying the fate of the unassembled T-cell antigen receptor (TCR) alpha chain. While the steady-state distribution of TCRalpha is in the ER, inhibition of retrograde transport by COPI induces the accumulation of TCRalpha in post-ER compartments, suggesting that TCRalpha is cycling between the ER and post-ER compartments. TCRalpha associates with BiP, a KDEL protein. Disruption of the ligand-binding function of the KDEL receptor releases TCRalpha from the early secretory system to the cell surface, so that TCRalpha is no longer subject to ER degradation. Thus, our findings suggest that retrieval by the KDEL receptor contributes to mechanisms by which the ER monitors newly synthesized proteins for their proper disposal.  相似文献   

2.
The protein phosphatase 2A (PP2A) holoenzyme consists of a catalytic subunit, C, and two regulatory subunits, A and B. The PP2A core enzyme is composed of subunits A and C. Both the holoenzyme and the core enzyme are similarly abundant in heart tissue. Transgenic mice were generated expressing high levels of a dominant negative mutant of the A subunit (A delta 5) in the heart, skeletal muscle, and smooth muscle that competes with the endogenous A subunit for binding the C subunit but does not bind B subunits. We found that the ratio of core enzyme to holoenzyme was increased in A delta 5-expressing hearts. Importantly, already at day 1 after birth, A delta 5-transgenic mice had an increased heart weight-to-body weight ratio that persisted throughout life. Echocardiographic analysis of A delta 5-transgenic hearts revealed increased end-diastolic and end-systolic dimensions and decreased fractional shortening. In addition, the thickness of the septum and of the left ventricular posterior wall was significantly reduced. On the basis of these findings, we consider the heart phenotype of A delta 5-transgenic mice to be a form of dilated cardiomyopathy that frequently leads to premature death.  相似文献   

3.
4.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR), which alleviates protein overload in the secretory pathway. Although the UPR is activated under diverse pathological conditions, its physiological role during development and in adulthood has not been fully elucidated. Binding immunoglobulin protein (BiP) is an ER chaperone, which is central to ER function. We produced knock-in mice expressing a mutant BiP lacking the retrieval sequence to cause a defect in ER function without completely eliminating BiP. In embryonic fibroblasts, the UPR compensated for mutation of BiP. However, neonates expressing mutant BiP suffered respiratory failure due to impaired secretion of pulmonary surfactant by alveolar type II epithelial cells. Expression of surfactant protein (SP)-C was reduced and the lamellar body was malformed, indicating that BiP plays a critical role in the biosynthesis of pulmonary surfactant. Because pulmonary surfactant requires extensive post-translational processing in the secretory pathway, these findings suggest that in secretory cells, such as alveolar type II cells, the UPR is essential for managing the normal physiological ER protein overload that occurs during development. Moreover, failure of this adaptive mechanism may increase pulmonary susceptibility to environmental insults, such as hypoxia and ischemia, ultimately leading to neonatal respiratory failure.  相似文献   

5.
Protein quality control in the endoplasmic reticulum   总被引:1,自引:0,他引:1  
Protein folding and quality control in the endoplasmic reticulum (ER) are synchronized mechanisms ensuring that only properly folded proteins are integrated in the plasma membrane or secreted from the cell. These mechanisms act in close collaboration with the molecular machinery involved in retrograde-translocation and degradation of non-native proteins and with the ER-stress activated signalling systems. The common goal of these mechanisms is to prevent expression and secretion of misfolded proteins. Protein misfolding can be detrimental to the cell and contributes to the disease mechanism in several inherited disorders, e.g. cystic fibrosis, familial hypercholesterolemia and diabetes insipidus. This review outlines the molecular mechanisms in protein quality control occurring in the ER, signalling caused by ER stress, and finally ER associated protein degradation.  相似文献   

6.
Autophagy is connected to a surprising range of cellular processes, including the stress response, developmental remodeling, organelle homeostasis and disease pathophysiology. The inducible, predominant form of autophagy, macroautophagy, involves dynamic membrane rearrangements, culminating in the formation of a double-membrane cytosolic vesicle, an autophagosome, which sequesters cytoplasm and organelles. The signal transduction mechanisms that regulate autophagy are poorly understood and have focused on extracellular nutrient sensing. Similarly, little is known about the contribution of the endomembrane organelles to autophagy-related processes. Recent studies have provided interesting links between these topics, revealing that the secretory pathway provides membrane for autophagosome formation, and that autophagy has an important role in organelle homeostasis.  相似文献   

7.
8.
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) evokes the ER stress response. The resultant outcomes are cytoprotective but also proapoptotic. ER chaperones and misfolded proteins exit to the secretory pathway and are retrieved to the ER, during which process the KDEL receptor plays a significant role. Using an expression of a mutant KDEL receptor that lacks the ability for ligand recognition, we show that the impairment of retrieval by the KDEL receptor led to a mis-sorting of the immunoglobulin-binding protein BiP, an ER chaperone that has a retrieval signal from the early secretory pathway, which induced intense ER stress response and an increase in susceptibility to ER stress in HeLa cells. Furthermore, we show that the ER stress response accompanied the activation of p38 mitogen-activated protein (MAP) kinases and c-Jun amino-terminal kinases (JNKs) and that the expression of the mutant KDEL receptor suppressed the activation of p38 and JNK1 but not JNK2. The effect of the expression of the mutant KDEL receptor was consistent with the effect of a specific inhibitor for p38 MAP kinases, because the inhibitor sensitized HeLa cells to ER stress. We also found that activation of the KDEL receptor by the ligand induced the phosphorylation of p38 MAP kinases. These results indicate that the KDEL receptor participates in the ER stress response not only by its retrieval ability but also by modulating MAP kinase signaling, which may affect the outcomes of the mammalian ER stress response.  相似文献   

9.
Protein folding and quality control in the endoplasmic reticulum   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. ER quality control guided by these chaperones is essential for life. Whereas correctly folded proteins are exported from the ER, misfolded proteins are retained and selectively degraded. At least two main chaperone classes, BiP and calnexin/calreticulin, are active in ER quality control. Folding factors usually are found in complexes. Recent work emphasises more than ever that chaperones act in concert with co-factors and with each other.  相似文献   

10.
M J Lewis  H R Pelham 《Cell》1992,68(2):353-364
Resident luminal endoplasmic reticulum (ER) proteins carry a targeting signal (usually KDEL in animal cells) that allows their retrieval from later stages of the secretory pathway. In yeast, the receptor that promotes this selective retrograde transport has been identified as the product of the ERD2 gene. We describe here the properties of a human homolog of this protein (hERD2). Overproduction of hERD2 improves retention of a protein with a weakly recognized variant signal (DDEL). Moreover, overexpression of KDEL or DDEL ligands causes a redistribution of hERD2 from the Golgi apparatus to the ER. Mutation of hERD2 alters the ligand specificity of this effect, implying that it interacts directly with the retained proteins. Ligand control of receptor movement may limit retrograde flow and thus minimize fruitless recycling of secretory proteins.  相似文献   

11.
Severe ultrastructural abnormalities of liver endoplasmic reticulum have been described in newborn mice homozygous for radiation-induced deletion alleles at the colour locus. The ultrastructural defects were accompanied by deficiencies of several enzymes and lowered serum protein levels. Studies on serum protein synthesis were undertaken to see if decreased rates of synthesis, especially of constituents thought to be synthesized on membrane-bound ribosomes, were the cause of the deficiencies. Although decreases or absence of several serum proteins were shown, radiopulse-immunoprecipitation studies of albumin and fibrinogen synthesis suggested that the decreased synthesis rates were a secondary defect. Serum glycoproteins were not altered more than other constituents in the mutant material.  相似文献   

12.
Gene constructs were designed to test the effect of the endoplasmic reticulum (ER)-targeting signal, KDEL, on the level of accumulation of a foreign protein in transgenic plants. The gene for the pea seed protein vicilin was modified by the addition of a sequence coding for this tetrapeptide at its carboxyl terminus. The altered gene was placed under the control of a CaMV 35S promoter and its expression in the leaves of both tobacco and lucerne (alfalfa) was compared with that of an equivalent vicilin construct lacking the KDEL-coding sequence. The presence of the ER-targeting signal led to a greatly enhanced accumulation of the heterologous protein. In lucerne and tobacco leaves, the level of vicilin-KDEL protein was 20 and 100 times greater than that of the unmodified vicilin, respectively. These differences in expression level could not be explained by corresponding differences in the steady-state levels or the translatability of the mRNAs. However, when the stability of vicilin and vicilin-KDEL proteins was compared in their respective transgenic hosts, unmodified vicilin was found to be degraded with a half-life of 4.5 h while vicilin-KDEL was much more stable with a half-life of more than 48 h. Immunogold labelling of leaf tissues from transgenic lucerne and tobacco showed the presence of vicilin associated with large aggregates within the ER lumen of vicilin-KDEL plants. No such aggregates were detected in transgenic plants expressing wild-type vicilin. It is concluded that the carboxy-terminal KDEL caused the retention of the modified vicilin in the ER, and that this retention led to the increased stability and higher level of accumulation of vicilin-KDEL in leaves of transgenic plants.  相似文献   

13.
The cellular pathways activated by mutant prion protein (PrP) in genetic prion diseases, ultimately leading to neuronal dysfunction and degeneration, are not known. Several mutant PrPs misfold in the early secretory pathway and reside longer in the endoplasmic reticulum (ER) possibly stimulating ER stress-related pathogenic mechanisms. To investigate whether mutant PrP induced maladaptive responses, we checked key elements of the unfolded protein response (UPR) in transgenic mice, primary neurons and transfected cells expressing two different mutant PrPs. Because ER stress favors the formation of untranslocated PrP that might aggregate in the cytosol and impair proteasome function, we also measured the activity of the ubiquitin proteasome system (UPS). Molecular, biochemical and immunohistochemical analyses found no increase in the expression of UPR-regulated genes, such as Grp78/Bip, CHOP/GADD153, or ER stress-dependent splicing of the mRNA encoding the X-box-binding protein 1. No alterations in UPS activity were detected in mutant mouse brains and primary neurons using the Ub(G76V)-GFP reporter and a new fluorogenic peptide for monitoring proteasomal proteolytic activity in vivo. Finally, there was no loss of proteasome function in neurons in which endogenous PrP was forced to accumulate in the cytosol by inhibiting cotranslational translocation. These results indicate that neither ER stress, nor perturbation of proteasome activity plays a major pathogenic role in prion diseases.  相似文献   

14.
15.
We used transgenic (TG) mice overexpressing mutant alpha-tropomyosin [alpha-Tm(Asp175Asn)], linked to familial hypertrophic cardiomyopathy (FHC), to test the hypothesis that this mutation impairs cardiac function by altering the sensitivity of myofilaments to Ca(2+). Left ventricular (LV) pressure was measured in anesthetized nontransgenic (NTG) and TG mice. In control conditions, LV relaxation was 6,970 +/- 297 mmHg/s in NTG and 5,624 +/- 392 mmHg/s in TG mice (P < 0.05). During beta-adrenergic stimulation, the rate of relaxation increased to 8,411 +/- 323 mmHg/s in NTG and to 6,080 +/- 413 mmHg/s in TG mice (P < 0.05). We measured the pCa-force relationship (pCa = -log [Ca(2+)]) in skinned fiber bundles from LV papillary muscles of NTG and TG hearts. In control conditions, the Ca(2+) concentration producing 50% maximal force (pCa(50)) was 5.77 +/- 0.02 in NTG and 5.84 +/- 0.01 in TG myofilament bundles (P < 0.05). After protein kinase A-dependent phosphorylation, the pCa(50) was 5.71 +/- 0.01 in NTG and 5.77 +/- 0. 02 in TG myofilament bundles (P < 0.05). Our results indicate that mutant alpha-Tm(Asp175Asn) increases myofilament Ca(2+)-sensitivity, which results in decreased relaxation rate and blunted response to beta-adrenergic stimulation.  相似文献   

16.
Quality control in the endoplasmic reticulum must discriminate nascent proteins in their folding process from terminally unfolded molecules, selectively degrading the latter. Unassembled Ig-mu and J chains, two glycoproteins with five N-linked glycans and one N-linked glycan, respectively, are degraded by cytosolic proteasomes after a lag from synthesis, during which glycan trimming occurs. Inhibitors of mannosidase I (kifunensine), but not of mannosidase II (swainsonine), prevent the degradation of mu chains. Kifunensine also inhibits J chain dislocation and degradation, without inhibiting secretion of IgM polymers. In contrast, glucosidase inhibitors do not significantly affect the kinetics of mu and J degradation. These results suggest that removal of the terminal mannose from the central branch acts as a timer in dictating the degradation of transport-incompetent, glycosylated Ig subunits in a calnexin-independent way. Kifunensine does not inhibit the degradation of an unglycosylated substrate (lambda Ig light chains) or of chimeric mu chains extended with the transmembrane region of the alpha T cell receptor chain, implying the existence of additional pathways for extracting proteins from the endoplasmic reticulum lumen for proteasomal degradation.  相似文献   

17.
18.
Quality control in the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The endoplasmic reticulum (ER) has a quality-control system for 'proof-reading' newly synthesized proteins, so that only native conformers reach their final destinations. Non-native conformers and incompletely assembled oligomers are retained, and, if misfolded persistently, they are degraded. As a large fraction of ER-synthesized proteins fail to fold and mature properly, ER quality control is important for the fidelity of cellular functions. Here, we discuss recent progress in understanding the conformation-specific sorting of proteins at the level of ER retention and export.  相似文献   

19.
Many genetic diseases are caused by mutations in cis-acting splicing signals, but few are triggered by defective trans-acting splicing factors. Here we report that tissue-specific ablation of the splicing factor SC35 in the heart causes dilated cardiomyopathy (DCM). Although SC35 was deleted early in cardiogenesis by using the MLC-2v-Cre transgenic mouse, heart development appeared largely unaffected, with the DCM phenotype developing 3-5 weeks after birth and the mutant animals having a normal life span. This nonlethal phenotype allowed the identification of downregulated genes by microarray, one of which was the cardiac-specific ryanodine receptor 2. We showed that downregulation of this critical Ca2+ release channel preceded disease symptoms and that the mutant cardiomyocytes exhibited frequency-dependent excitation-contraction coupling defects. The implication of SC35 in heart disease agrees with a recently documented link of SC35 expression to heart failure and interference of splicing regulation during infection by myocarditis-causing viruses. These studies raise a new paradigm for the etiology of certain human heart diseases of genetic or environmental origin that may be triggered by dysfunction in RNA processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号