首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single oscillator feedback model describing the circadian system of the nocturnal insect, Hemideina thoracica, (Gander and Lewis, 1979) has been developed and refined by restricting the range of parameter values which successfully simulate the known behaviour of this insect's circadian system. The model accounts for Aschoffs Law for nocturnal animals, and makes new predictions on the combined effects of temperature and constant light on the period of the free-running rhythm, which were verified experimentally. These simulations also indicate that the same general feedback model can be used to describe the circadian systems of other organisms.  相似文献   

2.
The New Zealand weta, Hemideina thoracica, is a nocturnal orthopteran insect which emerges from holes in trees or from under bark soon after sunset to forage for several hours on plant and animal material before returning to its refuge before dawn. In tests of the internal clock hypothesis it exhibits clear circadian locomotor rhythms in which the period is initially somewhat less than 24 h, but frequently spontaneously increases to over 25 h. The rhythms are entrainable by light and temperature cycles, obey Aschoff's Law and are temperature compensated. A single oscillator feedback model accounts for these basic properties of the weta clock, but does not explain a variety of examples of rhythm lability, such as day skipping, spontaneous change in period, scalloping and desynchrony typically found in the real data. To account for these characteristics the model is expanded into two linked populations of oscillators, which retain the basic properties of the simple model and in addition interact through their coupling to show the various types of free-run lability. To make these control systems models compatible with the molecular interpretation of circadian biology, each of the components in the feedback loop is matched with molecular function and structure.  相似文献   

3.
We are using the fungus Neurospora crassa as a model organism to study the circadian system of eukaryotes. Although the FRQ/WCC feedback loop is said to be central to the circadian system in Neurospora, rhythms can still be seen under many conditions in FRQ-less (frq knockout) strains. To try to identify components of the FRQ-less oscillator (FLO), we carried out a mutagenesis screen in a FRQ-less strain and selected colonies with altered conidiation (spore-formation) rhythms. A mutation we named UV90 affects rhythmicity in both FRQ-less and FRQ-sufficient strains. The UV90 mutation affects FRQ-less rhythms in two conditions: the free-running long-period rhythm in choline-depleted chol-1 strains becomes arrhythmic, and the heat-entrained rhythm in the frq(10) knockout is severely altered. In a FRQ-sufficient background, the UV90 mutation causes damping of the free-running conidiation rhythm, reduction of the amplitude of the FRQ protein rhythm, and increased phase-resetting responses to both light and heat pulses, consistent with a decreased amplitude of the circadian oscillator. The UV90 mutation also has small but significant effects on the period of the conidiation rhythm and on growth rate. The wild-type UV90 gene product appears to be required for a functional FLO and for sustained, high-amplitude rhythms in FRQ-sufficient conditions. The UV90 gene product may therefore be a good candidate for a component of the FRQ-less oscillator. These results support a model of the Neurospora circadian system in which the FRQ/WCC feedback loop mutually interacts with a single FLO in an integrated circadian system.  相似文献   

4.
Physiological and behavioral phenomena of many animals are restricted to certain times of the day. Many organisms show daily rhythms in their mating. The daily fluctuation in mating activity of a few insects is controlled by an endogenous clock. The fruitfly, Drosophila, is the most suitable material to characterize the genetic basis of circadian rhythms of mating because some mutants with defective core oscillator mechanism, feedback loops, have been isolated. D. melanogaster wild-type display a robust circadian rhythm in the mating activity, and the rhythms are abolished in period or timeless null mutant flies (per(01) and tim(01)), the rhythms are generated by females but not males. Disconnected (disco) mutants which have a severe defect in the optic lobe and are missing lateral neurons show arrhythmicity in mating activities. Thus, the lateral neurons seem to be essential for the circadian rhythm in mating activity of Drosophila. Furthermore, an anti-phasic relation in circadian rhythms of the mating activity was detected between D. melanogaster and their sibling species D. simulans. The Queensland fruit flies or wild gypsy moth also show species-specific mating rhythm, suggesting that species-specific circadian rhythms in mating activity of insect appear to cause a reproductive isolation.  相似文献   

5.
ABSTRACT. The behaviour of the circadian locomotor rhythm of the New Zealand weta, Hemideina thoracica (White), supports the model that the underlying pacemaker consists of a population of weakly coupled oscillators. Certain patterns of locomotor activity, previously demonstrated almost exclusively in vertebrates, are presented here as evidence for the above hypothesis. They include after-effects of various pre-treatments, rhythm-splitting and spontaneous changes in the rhythm. After-effects, which describe the unstable behaviour of free-running circadian rhythms following particular experimental perturbations, have been observed in Hemideina following single light pulses, constant dim light, and laboratory and natural entrainment. Period changes occurred in the activity rhythm after single light pulses of 8-h and 12-h duration (25 lx). Constant dim light (0.1 lx) increased the free-running period (τ) of the activity rhythm, but the after-effect of constant dim light was either an increase or a decrease in τ. After-effects upon both τ and the active phase length of the activity rhythm were found following non-24-h light entrainment cycles with 8-h and 12-h light phases of 25 lx. Qualitative measurements of these after-effects upon τ are presented which reveal a relationship between both the direction and amount of change in τ, and the difference between entrainment cycle length (T) and pre-entrainment free-running period. The after-effect of natural entrainment was an initial short-period free-run (τ < 24h) lasting 5–10 days, generally followed by a rapid period lengthening to τ= 25–26 h. Support for the population model was provided by spontaneous dampening, recovery, and period changes of the rhythm, together with the disruption of the active phase following critical light perturbations, and rhythm-splitting. These Hemideina results are compared with the simulations of the Coupled Stochastic System of Enright (1980).  相似文献   

6.
Nonphotic entrainment of an overt sleep-wake rhythm and a circadian pacemaker-driving temperature/melatonin rhythm suggests existence of feedback mechanisms in the human circadian system. In this study, the authors constructed a phase dynamics model that consisted of two oscillators driving temperature/melatonin and sleep-wake rhythms, and an additional oscillator generating an overt sleep-wake rhythm. The feedback mechanism was implemented by modifying couplings between the constituent oscillators according to the history of correlations between them. The model successfully simulated the behavior of human circadian rhythms in response to forced rest-activity schedules under free-run situations: the sleep-wake rhythm is reentrained with the circadian pacemaker after release from the schedule, there is a critical period for the schedule to fully entrain the sleep-wake rhythm, and the forced rest-activity schedule can entrain the circadian pacemaker with the aid of exercise. The behavior of human circadian rhythms was reproduced with variations in only a few model parameters. Because conventional models are unable to reproduce the experimental results concerned here, it was suggested that the feedback mechanisms included in this model underlie nonphotic entrainment of human circadian rhythms.  相似文献   

7.
Cyanobacteria are the simplest organisms known to exhibit circadian rhythms and have provided experimental model systems for the dissection of basic properties of circadian organization at the molecular, physiological, and ecological levels. This review focuses on the molecular and genetic mechanisms of circadian rhythm generation in cyanobacteria. Recent analyses have revealed the existence of multiple feedback processes in the prokaryotic circadian system and have led to a novel molecular oscillator model. Here, the authors summarize current understanding of, and open questions about, the cyanobacterial oscillator.  相似文献   

8.
When organisms are maintained under constant conditions of light and temperature, their endogenous circadian rhythms free run, manifesting their intrinsic period. The phases of these free-running rhythms can be shifted by stimuli of light, temperature, and drugs. The change from one free-running steady state to another following a perturbation often involves several transient cycles (cycles of free-running rhythm drifting slowly to catch up with the postperturbation steady state). Although the investigation of oscillator kinetics in circadian rhythms of both insects and mammals has revealed that the circadian pacemaker phase shifts instantaneously, the phenomenon of transient cycles has remained an enigma. We probed the phases of the transient cycles in the locomotor activity rhythm of the field mouse Mus booduga, evoked by a single light pulse (LP), using LPs at critically timed phases. The results of our experiments indicate that the transient cycles generated during transition from one steady state to another steady state do not represent the state of the circadian pacemaker (basic oscillator) controlling the locomotor activity rhythm in Mus booduga. (Chronobiology International, 17(2), 129-136, 2000)  相似文献   

9.
When organisms are maintained under constant conditions of light and temperature, their endogenous circadian rhythms free run, manifesting their intrinsic period. The phases of these free-running rhythms can be shifted by stimuli of light, temperature, and drugs. The change from one free-running steady state to another following a perturbation often involves several transient cycles (cycles of free-running rhythm drifting slowly to catch up with the postperturbation steady state). Although the investigation of oscillator kinetics in circadian rhythms of both insects and mammals has revealed that the circadian pacemaker phase shifts instantaneously, the phenomenon of transient cycles has remained an enigma. We probed the phases of the transient cycles in the locomotor activity rhythm of the field mouse Mus booduga, evoked by a single light pulse (LP), using LPs at critically timed phases. The results of our experiments indicate that the transient cycles generated during transition from one steady state to another steady state do not represent the state of the circadian pacemaker (basic oscillator) controlling the locomotor activity rhythm in Mus booduga. (Chronobiology International, 17(2), 129–136, 2000)  相似文献   

10.
11.
Belvin MP  Zhou H  Yin JC 《Neuron》1999,22(4):777-787
We report the role of dCREB2, the Drosophila homolog of CREB/CREM, in circadian rhythms. dCREB2 activity cycles with a 24 hr rhythm in flies, both in a light:dark cycle and in constant darkness. A mutation in dCREB2 shortens circadian locomotor rhythm in flies and dampens the oscillation of period, a known clock gene. Cycling dCREB2 activity is abolished in a period mutant, indicating that dCREB2 and Period affect each other and suggesting that the two genes participate in the same regulatory feedback loop. We propose that dCREB2 supports cycling of the Period/Timeless oscillator. These findings support CREB's role in mediating adaptive behavioral responses to a variey of environmental stimuli (stress, growth factors, drug addiction, circadian rhythms, and memory formation) in mammals and long-term memory formation and circadian rhythms in Drosophila.  相似文献   

12.
13.
王丹凤  杨广  陈文锋 《昆虫学报》2019,62(6):769-778
非编码RNA(ncRNA)是生物体细胞内一类重要的调控分子,其介导的昼夜节律调控日益受到研究者的重视。本文主要以黑腹果蝇Drosophila melanogaster和哺乳动物的相关研究为背景,阐述了微小RNA(miRNA)和长链非编码RNA(lncRNA)对昼夜节律的调控。miRNA介导的昼夜节律调控包括:生物体内(尤其是钟神经元中)具有节律性表达的miRNA;输入系统和miRNA存在相互调控,这主要是通过光照这个授时因子起作用;miRNA可直接调控核心振荡器,还可以调控其他基因而间接影响到核心振荡器;miRNA对输出系统的调控主要集中在代谢取食节律、运动节律、睡眠节律等。昼夜节律可调控lncRNA的表达,同时lncRNA也可调控昼夜节律,且lncRNA对基因调控范围广,作用机制复杂,这些都具有广阔的研究前景。本文将有助于进一步深入研究ncRNA对昼夜节律的调控。  相似文献   

14.
In the free-running circadian locomotor activity rhythm of a 7-year-old male owl monkey (Aotus lemurinus griseimembra) kept under constant light and climatic conditions (LL 0.2 lux, 25°C ± 1°C, 60 ± 5% relative humidity [RH]), a second rhythm component developed that showed strong relative coordination with the free-running activity rhythm of 24.4h and a 24h rhythm. The simultaneously recorded feeding activity rhythm strongly resembled this rhythm component. Therefore, it seems justified to infer that there was an internal desynchronization between the two behavioral rhythms or their circadian pacemakers, that is, between the light-entrainable oscillator located in the suprachiasmatic nuclei (SCN) and a food-entrainable oscillator located outside the SCN. This internal desynchronization may have been induced and/or maintained by a zeitgeber effect of the (irregular) 24h feeding schedule on the food-entrainable oscillator. The weak relative coordination shown by the activity rhythm indicates a much weaker coupling of the light-entrainable oscillator to the food-entrainable oscillator than vice versa. (Chronobiology International, 17(2), 147-153, 2000)  相似文献   

15.
The circadian wheel-running activity rhythms of individual hamster pups raised and maintained in constant dim light were measured beginning at 18 days of age. Records of the postweaning free-running activity rhythm were used to determine the phase of a pup's rhythm on the day of weaning and its phase relationship to its mother's rhythm. Although raised in constant light, the rhythms of pups within a litter were approximately synchronous and in phase with their mother's activity rhythm. These results indicate that the circadian oscillator underlying the activity rhythm is functional prior to weaning and is entrained by some as yet unidentified aspect of maternal rhythmicity. Furthermore, the results suggest that even in the absence of external entraining cycles, behavioral rhythms, and perhaps physiologic rhythms as well, of a mother and her offspring are normally synchronized.  相似文献   

16.
In the free-running circadian locomotor activity rhythm of a 7-year-old male owl monkey (Aotus lemurinus griseimembra) kept under constant light and climatic conditions (LL 0.2 lux, 25°C ± 1°C, 60 ± 5% relative humidity [RH]), a second rhythm component developed that showed strong relative coordination with the free-running activity rhythm of 24.4h and a 24h rhythm. The simultaneously recorded feeding activity rhythm strongly resembled this rhythm component. Therefore, it seems justified to infer that there was an internal desynchronization between the two behavioral rhythms or their circadian pacemakers, that is, between the light-entrainable oscillator located in the suprachiasmatic nuclei (SCN) and a food-entrainable oscillator located outside the SCN. This internal desynchronization may have been induced and/or maintained by a zeitgeber effect of the (irregular) 24h feeding schedule on the food-entrainable oscillator. The weak relative coordination shown by the activity rhythm indicates a much weaker coupling of the light-entrainable oscillator to the food-entrainable oscillator than vice versa. (Chronobiology International, 17(2), 147–153, 2000)  相似文献   

17.
The location of the circadian pacemakers of the orthopteran Hemideina thoracica (White) has been investigated through observation of the effects of surgical removal of brain tissues (principally optic lobes and tracts) on free-running and entrained locomotor rhythms. Bilobectomy and severance of optic tracts invariably resulted in arrhythmicity, whereas rhythmicity was sustained following unilateral lobectomy, generally with increases in the free-running period (FRP) and decreases in both the active-phase lengths and activity-to-rest ratios of the rhythm. Bilobectomized subjects could be entrained by temperature cycles, but exhibited no transients or residual rhythmicity, indicating that temperature brought about a direct response or masking effect. These results support the hypothesis that the circadian locomotor pacemakers of Hemideina are located within each optic lobe, and that there are no extraoptic centers for the control of the timing of locomotor activity. Although confirmation of the pacemaker role of the optic lobes requires transplantation of the tissues, the conclusion may be drawn by inference from other studies (e.g., Leucophaea maderae--Page, 1983; Gryllus bimaculatus--Tomioka and Chiba, 1986). Light entrainment continued after surgical binding and blackening of the compound eyes and ocelli, supporting the view that direct illumination of neural tissue through the cuticle may be one possible pathway for light entrainment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号