首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eight amino acid sequence, Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys, representing the FLAG peptide, was inserted after codons 22 or 88 of the mouse (Mo) prion protein (PrP) gene. Inclusion of the FLAG sequence at these locations interfered neither with the cellular processing of PrPC nor its conversion into PrPSc. Inclusion of the FLAG epitope at residue 22 but not at residue 88 facilitated immunodetection of tagged PrP by anti-FLAG monoclonal antibodies (mAbs). Inoculation of transgenic (Tg) mice expressing N-terminally tagged MoPrP with Mo prions resulted in abbreviated incubation times, indicating that the FLAG sequence was not deleterious to prion propagation. Immunopurification of FLAG-tagged MoPrPC in the brains of Tg mice was achieved using the calcium-dependent anti-FLAG M1 mAb and non-denaturing procedures. Although the function of PrPC remains unknown, our studies demonstrate that some modifications of PrPC do not inhibit the one biological activity that can be measured, i.e., conversion into PrPSc. Tagged PrP molecules may prove useful in the development of improved assays for prions as well as structural studies of the PrP isoforms.  相似文献   

2.
The cellular isoform of the prion protein (PrPC) is a sialoglycoprotein bound almost exclusively on the external surface of the plasma membrane by a glycosyl phosphatidylinositol anchor. The deduced amino acid sequence of Syrian hamster PrPC identifies two potential sites for the addition of Asn-linked carbohydrates at amino acids 181-183 (Asn-Ile-Thr) and 197-199 (Asn-Phe-Thr). We have altered these sites by replacing the threonine residues with alanine and expressed the mutant proteins transiently in CV1 cells utilizing a mutagenesis vector with the T7 promoter located upstream from the PrP gene. The T7 RNA polymerase was supplied by infection with a recombinant vaccinia virus. The 3 mutant proteins (PrPAla183, PrPAla199 and PrPAla183/199) have a reduced relative molecular weight compared to wild-type (wt) PrP. Deglycosylation as well as synthesis in the presence of tunicamycin reduced the relative molecular weight of all the PrP species to that of the double mutant PrPAla183/199. Our results indicate that both single-site mutant prion proteins are glycosylated at non-mutated sites and they suggest that both potential sites for Asn-linked glycosylation are utilized in wt PrPC. Immunofluorescence studies demonstrate that while wt PrPC localizes to the cell surface, all the mutant PrP molecules accumulate intracellularly. The site of accumulation of PrPAla183 is probably prior to the mid-Golgi stack since this protein does not acquire resistance to endoglycosidase H. Whether the intracellular locations of the mutant PrPC species are the same as those identified for the scrapie isoform of the prion protein (PrPSc) remains to be established.  相似文献   

3.
The efficient expression of exogenous prion protein (PrP) molecules in mouse neuroblastoma cells that are chronically infected with murine scrapie prions (ScN2a cells; Butler, D.A., et al., 1988, J. Virol. 62, 1558-1564) and in transgenic mice is described. This technology allows investigation of the PrP molecule for structural regions involved in determining species specificity, as well as ablation experiments designed to address the functionality of particular regions of the PrP molecule. Previous reports demonstrated that the PrP gene specifies the host range for susceptibility of transgenic animals to prions (Scott, M., et al., 1989, Cell 59, 847-857; Prusiner, S.B., et al., 1990, Cell 63, 673-686). Consistent with these results, we showed that Syrian hamster (SHa) PrP is ineligible for efficient conversion to PrPSc in ScN2a cells. By constructing a series of chimeric mouse (Mo)/SHaPrP genes, we developed an epitopically tagged functional variant of the MoPrP gene, which can efficiently form protease-resistant PrP molecules upon expression in ScN2a cells. The presence of a defined epitope for an SHa-specific monoclonal antibody allows the products of this chimeric gene to be discriminated from endogenous MoPrP and creates a useful reagent for exploring structure/function relationships via targeted mutagenesis. In addition, we developed a transgenic mouse expression vector by manipulation of an SHaPrP cosmid clone. This vector permits the efficient expression of foreign PrP genes in the brains of transgenic animals, enabling pathological consequences of in vitro mutagenesis to be studied.  相似文献   

4.
The scrapie prion protein (PrPSc) is derived from a cellular isoform (PrPC) that acquires protease resistance posttranslationally. We have used several different experimental approaches in attempts to reconstitute in vitro the processes leading to protease-resistant PrPSc molecules. In the first study, we performed mixing experiments by adding mouse PrP 27-30 (MoPrP27-30), the protease-resistant core of PrPSc, to PrPC and then incubating the mixture to investigate the possibility of heterodimer formation as a first step in prion replication. We used epitopically tagged PrP molecules, synthesized in murine neuroblastoma (N2a) cells transfected with the chimeric mouse/Syrian hamster MHM2 PrP construct, which are recognized by the Syrian hamster-specific monoclonal antibody 3F4. After as long as 24 h of incubation, the reaction mixture was assayed for heterodimeric intermediates of MHM2 PrPC and MoPrPSc and for protease-resistant 3F4-reactive PrP. We were unable to identify any aggregates of MHM2 PrPC and MoPrPSc on immunoblots; furthermore, we did not observe de novo formation of protease-resistant MHM2 PrP. In a second study, MoPrPC was metabolically radiolabeled in scrapie prion-infected N2a cultured cells, and then the cell extract was homogenized and incubated under various conditions to allow for the formation of protease-resistant MoPrPSc. We observed no radiolabeled MoPrPSc by immunoprecipitation after as long as 24 h of in vitro incubation. In a third approach, Syrian hamster PrP (SHaPrP) was synthesized in a cell-free translation system supplemented with microsomal membranes derived from either normal or scrapie prion-infected cultured cells. We found that all SHaPrP species translocated across microsomal membranes from scrapie prion-infected cells were protease sensitive in the presence of detergents and displayed the same topology as those generated by microsomes from normal cells or from dog pancreas. We also studied PrP molecules that encode the codon 102 mutation that causes the rare human prion disease Gerstmann-Str?ussler-Scheinker (GSS) syndrome. On the basis of our data, GSSPrP appears to yield topological forms similar to those of the wild-type PrP when processed by either normal or scrapie prion-derived microsomes.  相似文献   

5.
Scrapie prion protein contains a phosphatidylinositol glycolipid   总被引:66,自引:0,他引:66  
N Stahl  D R Borchelt  K Hsiao  S B Prusiner 《Cell》1987,51(2):229-240
The scrapie (PrPSc) and cellular (PrPC) prion proteins are encoded by the same gene, and their different properties are thought to arise from posttranslational modifications. We have found a phosphatidylinositol glycolipid on both PrPC and PrP 27-30 (derived from PrPSc by limited proteolysis at the amino terminus). Ethanolamine, myo-inositol, phosphate, and stearic acid were identified as glycolipid components of gel-purified PrP 27-30. PrP 27-30 contains 2.8 moles of ethanolamine per mole. Incubation of PrP 27-30 with a bacterial phosphatidylinositol-specific phospholipase C (PIPLC) releases covalently bound stearic acid, and allows PrP 27-30 to react with antiserum specific for the PIPLC-digested glycolipid linked to the carboxyl terminus of the trypanosomal variant surface glycoprotein. PIPLC catalyzes the release of PrPC from cultured mammalian cells into the medium. These observations indicate that PrPC is anchored to the cell surface by the glycolipid.  相似文献   

6.
The abnormal isoform of the scrapie prion protein PrPSc is both a host-derived protein and a component of the infectious agent causing scrapie. PrPSc and the normal cellular isoform PrPC have different physical properties that apparently arise from a posttranslational event. Both PrP isoforms are covalently modified at the carboxy terminus by a glycoinositol phospholipid. Using preparations of dissociated cells derived from normal and scrapie-infected hamster brain tissue, we find that the majority of PrPC is released from membranes by phosphatidylinositol-specific phospholipase C (PIPLC), while PrPSc is resistant to release. In contrast, purified denatured PrP 27-30 (which is formed from PrPSc during purification by proteolysis of the amino terminus) is completely cleaved by PIPLC. Incubation of the cell preparations with proteinase K cleaves PrPSc to form PrP 27-30, demonstrating that PrPSc is accessible to added enzymes. We have also developed a protocol involving biotinylation that gives a quantitative estimate of the fraction of a protein exposed to the cell exterior. Using this strategy, we find that a large portion of PrPSc in the cell preparations reacts with a membrane-impermeant biotinylation reagent. Whether alternative membrane anchoring of PrPSc, inaccessibility of the glycoinositol phospholipid anchor to PIPLC, or binding to another cellular component is responsible for the differential release of prion proteins from cells remains to be determined.  相似文献   

7.
Purification and properties of the cellular and scrapie hamster prion proteins   总被引:23,自引:0,他引:23  
During scrapie infection an abnormal isoform of the prion protein (PrP), designated PrPSc, accumulates and is found to copurify with infectivity; to date, no nucleic acid has been found which is scrapie-specific. Both uninfected and scrapie-infected cells synthesize a PrP isoform, denoted PrPC, which exhibits physical properties that differentiate it from PrPSc. PrPC was purified by immunoaffinity chromatography using a PrP-specific monoclonal antibody cross-linked to protein-A--Avidgel. PrPSc was purified by detergent extraction, poly(ethylene glycol) precipitation and repeated differential centrifugation of PrPSc polymers. Both PrP isoforms were found to have the same N-terminal amino acid sequence which begins at a predicted signal peptide cleavage site. The first 8 residues of PrPC were found to be KKXPKPGG and the first 29 residues of PrPSc were found to be KKXPKPGGWNTGGSXYPGQGSPGGNRYPP. Arg residues 3 and 15 in PrPSc and 3 in PrPC appear to be modified since no detectable signals (denoted X) were found at these positions during gas-phase sequencing. Both PrP isoforms were found to contain an intramolecular disulfide bond, linking Cys 179 and 214, which creates a loop of 36 amino acids containing the two N-linked glycosylation sites. Development of a purification protocol for PrPC should facilitate comparisons of the two PrP isoforms and lead to an understanding of how PrPSc is synthesized either from PrPC or a precursor.  相似文献   

8.
Liemann S  Glockshuber R 《Biochemistry》1999,38(11):3258-3267
Transmissible spongiform encephalopathies (TSEs) are caused by a unique infectious agent which appears to be identical with PrPSc, an oligomeric, misfolded isoform of the cellular prion protein, PrPC. All inherited forms of human TSEs, i.e., familial Creutzfeldt-Jakob disease, Gerstmann-Str?ussler-Scheinker syndrome, and fatal familial insomnia, segregate with specific point mutations or insertions in the gene coding for human PrP. Here we have tested the hypothesis that these mutations destabilize PrPC and thus facilitate its conversion into PrPSc. Eight of the disease-specific amino acid replacements are located in the C-terminal domain of PrPC, PrP(121-231), which constitutes the only part of PrPC with a defined tertiary structure. Introduction of all these replacements into PrP(121-231) yielded variants with the same spectroscopic characteristics as wild-type PrP(121-231) and similar to full-length PrP(23-231), which excludes the possibility that the exchanges a priori induce a PrPSc-like conformation. The thermodynamic stabilities of the variants do not correlate with specific disease phenotypes. Five of the amino acid replacements destabilize PrP(121-231), but the other variants have the same stability as the wild-type protein. These data suggest that destabilization of PrPC is neither a general mechanism underlying the formation of PrPSc nor the basis of disease phenotypes in inherited human TSEs.  相似文献   

9.
Prions and prion proteins   总被引:7,自引:0,他引:7  
N Stahl  S B Prusiner 《FASEB journal》1991,5(13):2799-2807
Neurodegenerative diseases of animals and humans including scrapie, bovine spongiform encephalopathy, and Creutzfeldt-Jakob disease are caused by unusual infectious pathogens called prions. There is no evidence for a nucleic acid in the prion, but diverse experimental results indicate that a host-derived protein called PrPSc is a component of the infectious particle. Experiments with scrapie-infected cultured cells show that PrPSc is derived from a normal cellular protein called PrPC through an unknown posttranslational process. We have analyzed the amino acid sequence and posttranslational modifications of PrPSc and its proteolytically truncated core PrP 27-30 to identify potential candidate modifications that could distinguish PrPSc from PrPC. The amino acid sequence of PrP 27-30 corresponds to that predicted from the gene and cDNA. Mass spectrometry of peptides derived from PrPSc has revealed numerous modifications including two N-linked carbohydrate moieties, removal of an amino-terminal signal sequence, and alternative COOH termini. Most molecules contain a glycosylinositol phospholipid (GPI) attached at Ser-231 that results in removal of 23 amino acids from the COOH terminus, whereas 15% of the protein molecules are truncated to end at Gly-228. The structure of the GPI from PrPSc has been analyzed and found to be novel, including the presence of sialic acid. Other experiments suggest that the N-linked oligosaccharides are not necessary for PrPSc formation. Although detailed comparison of PrPSc with PrPC is required, there is no obvious way in which any of the modifications might confer upon PrPSc its unusual physical properties and allow it to act as a component of the prion. If no chemical difference is found between PrPC and PrPSc, then the two isoforms of the prion protein may differ only in their conformations or by the presence of bound cellular components.  相似文献   

10.
The cellular prion protein (PrPC) is a sialoglycoprotein anchored to the external surface of cells by a glycosyl phosphatidylinositol moiety. During scrapie, an abnormal PrP isoform designated PrPSc accumulates, and much evidence argues that it is a major and necessary component of the infectious prion. Based on the resistance of native PrPSc to proteolysis and to digestion with phosphatidylinositol-specific phospholipase C as well as the enhancement of PrPSc immunoreactivity after denaturation, we devised in situ immunoassays for the detection of PrPSc in cultured cells. Using these immunoassays, we identified the sites of PrPSc accumulation in scrapie-infected cultured cells. We also used these immunoassays to isolate PrPSc-producing clones from a new hamster brain cell line (HaB) and found an excellent correlation between their PrPSc content and prion infectivity titers. In scrapie-infected HaB cells as well as in scrapie-infected mouse neuroblastoma cells, most PrPSc was found to be intracellular and most localized with ligands of the Golgi marker wheat germ agglutinin. In one scrapie-infected HaB clone, PrPSc also localized extensively with MG-160, a protein resident of the medial-Golgi stack whereas this colocalization was not observed in another subclone of these cells. Whether the sites of intracellular accumulation of PrPSc are limited to a few subcellular organelles or they are highly variable remains to be determined. If the intracellular accumulation of PrPSc is found in the cells of the central nervous system, then it might be responsible for the neuronal dysfunction and degeneration which are cardinal features of prion diseases.  相似文献   

11.
Identification of cellular proteins binding to the scrapie prion protein   总被引:2,自引:0,他引:2  
The scrapie prion protein (PrPSc) is an abnormal isoform of the cellular protein PrPc. PrPSc is found only in animals with scrapie or other prion diseases. The invariable association of PrPSc with infectivity suggests that PrPSc is a component of the infectious particle. In this study, we report the identification of two proteins from hamster brain of 45 and 110 kDa (denoted PrP ligands Pli 45 and Pli 110) which were able to bind to PrP 27-30, the protease-resistant core of PrPSc on ligand blots. Pli 45 and Pli 110 also bound PrPC. Both Pli's had isoelectric points of approximately 5. The dissociation rate constant of the Pli 45/PrP 27-30 complex was 3 x 10(-6) s-1. Amino acid and protein sequence analyses were performed on purified Pli 45. Both the composition and the sequence were almost identical with those predicted for mouse glial fibrillary acidic protein (GFAP). Furthermore, antibodies to Pli 45 reacted with recombinant GFAP. The identification of proteins which interact with the PrP isoforms in normal and diseased brain may provide new insights into the function of PrPC and into the molecular mechanisms underlying prion diseases.  相似文献   

12.
PrPSc, an abnormal isoform of PrPC, is the only known component of the prion, an agent causing fatal neurodegenerative disorders such as bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease (CJD). It has been postulated that prion diseases propagate by the conversion of detergent-soluble and protease-sensitive PrPC molecules into protease-resistant and insoluble PrPSc molecules by a mechanism in which PrPSc serves as a template. We show here that the chemical chaperone dimethyl sulfoxide (Me2SO) can partially inhibit the aggregation of either PrPSc or that of its protease-resistant core PrP27-30. Following Me2SO removal by methanol precipitation, solubilized PrP27-30 molecules aggregated into small and amorphous structures that did not resemble the rod configuration observed when scrapie brain membranes were extracted with Sarkosyl and digested with proteinase K. Interestingly, aggregates derived from Me2SO-solubilized PrP27-30 presented less than 1% of the prion infectivity obtained when the same amount of PrP27-30 in rods was inoculated into hamsters. These results suggest that the conversion of PrPC into protease-resistant and detergent-insoluble PrP molecules is not the only crucial step in prion replication. Whether an additional requirement is the aggregation of newly formed proteinase K-resistant PrP molecules into uniquely structured aggregates remains to be established.  相似文献   

13.
PrPSc [abnormal disease-specific conformation of PrP (prion-related protein)] accumulates in prion-affected individuals in the form of amorphous aggregates. Limited proteolysis of PrPSc results in a protease-resistant core of PrPSc of molecular mass of 27-30 kDa (PrP27-30). Aggregated forms of PrP co-purify with prion infectivity, although infectivity does not always correlate with the presence of PrP27-30. This suggests that discrimination between PrPC (normal cellular PrP) and PrPSc by proteolysis may underestimate the repertoire and quantity of PrPSc subtypes. We have developed a CDI (conformation-dependent immunoassay) utilizing time-resolved fluorescence to study the conformers of disease-associated PrP in natural cases of sheep scrapie, without using PK (proteinase K) treatment to discriminate between PrPC and PrPSc. The capture-detector CDI utilizes N-terminal- and C-terminal-specific anti-PrP monoclonal antibodies that recognize regions of the prion protein differentially buried or exposed depending on the extent of denaturation of the molecule. PrPSc was precipitated from scrapie-infected brain stem and cerebellum tissue following sarkosyl extraction, with or without the use of sodium phosphotungstic acid, and native and denatured PrPSc detected by CDI. PrPSc was detectable in brain tissue from homozygous VRQ (V136 R154 Q171) and ARQ (A136 R154 Q171) scrapie-infected sheep brains. The highest levels of PrPSc were found in homozygous VRQ scrapie-infected brains. The quantity of PrPSc was significantly reduced, up to 90% in some cases, when samples were treated with PK prior to the CDI. Collectively, our results show that the level of PrPSc in brain samples from cases of natural scrapie display genotypic differences and that a significant amount of this material is PK-sensitive.  相似文献   

14.
The central event in the pathogenesis of prion diseases, a group of fatal, transmissible neurodegenerative disorders including Creutzfeldt-Jakob disease (CJD) in humans, is the conversion of the normal or cellular prion protein (PrPC) into the abnormal or scrapie isoform (PrPSc). The basis of the PrPC to PrPSc conversion is thought to involve the diminution of alpha-helical domains accompanied by the increase of beta structures within the PrP molecule. Consequently, treatment of PrPSc with proteinase K (PK) generates a large PK-resistant C-terminal core fragment termed PrP27-30 that in human prion diseases has a gel mobility of approximately 19-21 kDa for the unglycosylated form, and a ragged N terminus between residues 78 and 103. PrP27-30 is considered the pathogenic and infectious core of PrPSc. Here we report the identification of two novel PK-resistant, but much smaller C-terminal fragments of PrP (PrP-CTF 12/13) in brains of subjects with sporadic CJD. PrP-CTF 12/13, like PrP27-30, derive from both glycosylated as well as unglycosylated forms. The unglycosylated PrPCTF 12/13 migrate at 12 and 13 kDa and have the N terminus at residues 162/167 and 154/156, respectively. Therefore, PrP-CTF12/13 are 64-76 amino acids N-terminally shorter than PrP27-30 and are about half of the size of PrP27-30. PrP-CTF12/13 are likely to originate from a subpopulation of PrPSc distinct from that which generates PrP27-30. The finding of PrP-CTF12/13 in CJD brains widens the heterogeneity of the PK-resistant PrP fragments associated with prion diseases and may provide useful insights toward the understanding of the PrPSc structure and its formation.  相似文献   

15.
Familial prion disorders are believed to result from spontaneous conversion of mutant prion protein (PrPM) to the pathogenic isoform (PrPSc). While most familial cases are heterozygous and thus express the normal (PrPC) and mutant alleles of PrP, the role of PrPC in the pathogenic process is unclear. Plaques from affected cases reveal a heterogeneous picture; in some cases only PrPM is detected, whereas in others both PrPC and PrPM are transformed to PrPSc. To understand if the coaggregation of PrPC is governed by PrP mutations or is a consequence of the cellular compartment of PrPM aggregation, we coexpressed PrPM and PrPC in neuroblastoma cells, the latter tagged with green fluorescent protein (PrPC-GFP) for differentiation. Two PrPM forms (PrP231T, PrP217R/231T) that aggregate spontaneously in the endoplasmic reticulum (ER) were generated for this analysis. We report that PrPC-GFP aggregates when coexpressed with PrP231T or PrP217R/231T, regardless of sequence homology between the interacting forms. Furthermore, intracellular aggregates of PrP231T induce the accumulation of a C-terminal fragment of PrP, most likely derived from a potentially neurotoxic transmembrane form of PrP (CtmPrP) in the ER. These findings have implications for prion pathogenesis in familial prion disorders, especially in cases where transport of PrPM from the ER is blocked by the cellular quality control.  相似文献   

16.
Evidence for synthesis of scrapie prion proteins in the endocytic pathway.   总被引:28,自引:0,他引:28  
Infectious scrapie prions are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrP) which is designated PrPSc. A chromosomal gene encodes both the cellular prion protein (PrPC) as well as PrPSc. Pulse-chase experiments with scrapie-infected cultured cells indicate that PrPSc is formed by a post-translational process. PrP is translated in the endoplasmic reticulum, modified as it passes through the Golgi, and is transported to the cell surface. Release of nascent PrP from the cell surface by phosphatidylinositol-specific phospholipase C or hydrolysis with dispase prevented PrPSc synthesis. At 18 degrees C, the synthesis of PrPSc was inhibited under conditions that other investigators report a blockage of endosomal fusion with lysosomes. Our results suggest that PrPSc synthesis occurs after PrP transits from the cell surface. Whether all of the PrP molecules have an equal likelihood to be converted into PrPSc or only a distinct subset is eligible for conversion remains to be established. Identifying the subcellular compartment(s) of PrPSc synthesis should be of considerable importance in defining the molecular changes that distinguish PrPSc from PrPC.  相似文献   

17.
The molecular hallmark of prion disease is the conversion of normal prion protein (PrPC) to an insoluble, proteinase K-resistant, pathogenic isoform (PrPSc). Once generated, PrPSc propagates by complexing with, and transferring its pathogenic conformation onto, PrPC. Defining the specific nature of this PrPSc-PrPC interaction is critical to understanding prion genesis. To begin to approach this question, we employed a prion-infected neuroblastoma cell line (ScN2a) combined with a heterologous yeast expression system to independently model PrPSc generation and propagation. We additionally applied fluorescence resonance energy transfer analysis to the latter to specifically study PrP-PrP interactions. In this report we focus on an N-terminal hydrophobic palindrome of PrP (112-AGAAAAGA-119) thought to feature intimately in prion generation via an unclear mechanism. We found that, in contrast to wild type (wt) PrP, PrP lacking the palindrome (PrPDelta112-119) neither converted to PrPSc when expressed in ScN2a cells nor generated proteinase K-resistant PrP when expressed in yeast. Furthermore, PrPDelta112-119 was a dominant-negative inhibitor of wtPrP in ScN2a cells. Both wtPrP and PrPDelta112-119 were highly insoluble when expressed in yeast and produced distinct cytosolic aggregates when expressed as fluorescent fusion proteins (PrP::YFP). Although self-aggregation was evident, fluorescence resonance energy transfer studies in live yeast co-expressing PrPSc-like protein and PrPDelta112-119 indicated altered interaction properties. These results suggest that the palindrome is required, not only for the attainment of the PrPSc conformation but also to facilitate the proper association of PrPSc with PrPC to effect prion propagation.  相似文献   

18.
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrPC) to the disease-specific form (PrPSc). The transition from PrPC to PrPSc involves a major conformational change, resulting in amorphous protein aggregates and fibrillar amyloid deposits with increased beta-sheet structure. Using recombinant PrP refolded into a beta-sheet-rich form (beta-PrP) we have studied the fibrillization of beta-PrP both in solution and in association with raft membranes. In low ionic strength thick dense fibrils form large networks, which coexist with amorphous aggregates. High ionic strength results in less compact fibrils, that assemble in large sheets packed with globular PrP particles, resembling diffuse aggregates found in ex vivo preparations of PrPSc. Here we report on the finding of a beta-turn-rich conformation involved in prion fibrillization that is toxic to neuronal cells in culture. This is the first account of an intermediate in prion fibril formation that is toxic to neuronal cells. We propose that this unusual beta-turn-rich form of PrP may be a precursor of PrPSc and a candidate for the neurotoxic molecule in prion pathogenesis.  相似文献   

19.
We used anti-prion (PrP) monoclonal antibodies (Mabs) in different combinations to scan changes in the availability of antibody binding epitopes--using an epitope scanning assay--in brain homogenates from normal mice, and from mice infected with either ME7 or 139 A strains of infectious scrapie prion (PrPSc). In ME7-infected brains, the epitope detected by the Mab pair 8B4/8H4 is reduced, while the epitope detected by the Mab pair 8F9/11G5 is increased. Mab 8F9/11G5 detect a conformational epitope on PrPSc because the rise in Mab 8F9/11G5 binding is sensitive to a denaturing agent but resistant to proteinase K (PK). While the increase in Mab 8F9/11G5 binding correlates with the presence of PK-resistant PrP and clinical signs of infection, the reduction in Mab 8B4/8H4 binding is detected earlier. Fractionation of the ME7-infected brain homogenate in sucrose gradient revealed that the PrPSc species detected by the epitope scanning assay are heterogeneous in size, with a molecular mass of approximately > or = 2000-kDa. We also investigated whether these findings were applicable to two other strains of PrPSc, namely 87 V and 22 L. We found that the decrease in Mab 8B4/8H4 binding detected in ME7-infected brains was also detected in 87 V-infected brains but not in 22 L-infected brains. In contrast, the increase in Mab 8F9/11G5 binding detected in ME7- and 139 A-infected brains was also detected in 22 L-infected brains but not in 87 V-infected brains. Therefore, each prion strain has its unique conformation, and we can monitor the conversion of normal cellular prion (PrPC) to PrPSc based on the changes in the antibody binding patterns. The epitope can be decreased or increased, linear or conformational, detected late or early during infection, in a strain specific manner.  相似文献   

20.
Prion diseases are a group of neurodegenerative disorders associated with conversion of a normal prion protein, PrPC, into a pathogenic conformation, PrPSc. The PrPSc is thought to promote the conversion of PrPC. The structure and stability of PrPC are well characterized, whereas little is known about the structure of PrPSc, what parts of PrPC undergo conformational transition, or how mutations facilitate this transition. We use a computational knowledge-based approach to analyze the intrinsic structural propensities of the C-terminal domain of PrP and gain insights into possible mechanisms of structural conversion. We compare the properties of PrP sequences to those of a PrP paralog, Doppel, and to the distributions of structural propensities observed in known protein structures from the Protein Data Bank. We show that the prion protein contains at least two sequence fragments with highly unusual intrinsic propensities, PrP(114-125) and helix B. No segments with unusual properties were found in Doppel protein, which is topologically identical to PrP but does not undergo structural rearrangements. Known disease-promoting PrP mutations form a statistically significant cluster in the region comprising helices B and C. Due to their unusual properties, PrP(114-125) and the C terminus of helix B may be considered as primary candidates for sites involved in conformational transition from PrPC to PrPSc. The results of our study also show that most PrP mutations associated with neurodegenerative disorders increase local hydrophobicity. We suggest that the observed increase in hydrophobicity may facilitate PrP-to-PrP or/and PrP-to-cofactor interactions, and thus promote structural conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号