首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Dopamine (DA) is oxidized to the neurotoxic prooxidant species H2O2, OH, and DA quinones. We tested whether dimethyl fumarate (DMF), an electrophile shown to induce a pleiotropic antioxidant response in nonneuronal cells, could reduce the toxicity of DA metabolites in neural cells. Treatment of the N18-RE-105 neuroblastoma-retina hybridoma cell line with 30–150 µ M dopamine led to cell death within 24 h, which increased steeply with dose, decreased with higher plating density, and was blocked by the H2O2-metabolizing enzyme catalase. Pretreatment with DMF (30 µ M , 24 h) significantly attenuated DA and H2O2 toxicity (40–60%) but not that caused by the calcium ionophore ionomycin. DMF treatment also elevated total intracellular GSH and increased activities of the antioxidant enzymes quinone reductase (QR), glutathione S -transferase (GST), glutathione reductase, and the pentose phosphate enzyme glucose-6-phosphate dehydrogenase. To assess the protective efficacy of QR and GST, a stable cell line was constructed in which these enzymes were overexpressed. Cell death in the overexpressing line was not significantly different from that in a cell line expressing normal QR and GST activities, indicating that these two enzymes alone are insufficient for protection against DA toxicity. Although the relative importance of a single antioxidant enzyme such as QR or GST may be small, antioxidant inducers such as DMF may prove valuable as agents that elicit a broad-spectrum neuroprotective response.  相似文献   

2.
Sodium butyrate (butyrate), 5-azacytidine (5Aza-C), dimethyl sulfoxide (DMSO), and dimethyl formamide (DMF) were applied to a human melanoma cell line for the purpose of inducing pigmentation and terminal differentiation. The results are summarized as follows: 1) butyrate, DMSO, and DMF had a strong cytostatic effect, arresting cells in the G1 phase of the cycle; 2) butyrate caused a morphological change to spindle shape whereas DMSO and DMF produced rounded cells, without affecting the levels of vimentin and intermediate filaments; 3) tyrosinase activity and melanization were stimulated by DMSO and DMF but not by butyrate; 4) butyrate induced several membrane-bound enzyme activities (alkaline phosphatase and -γ-glutamyl transpeptidase); 5) changes in the expression of antigens related to tyrosinase activity (2B7 and 5C12) only partly corresponded to the changes in enzyme activity; 6) expression of the melanosomal B863 antigen was decreased by butyrate, DMSO, and DMF; and 7) the action of DMF resembled that of DMSO whereas 5Aza-C had little effect. The results indicate that these differentiating agents activate different sets of genes, the melanogenic pathway being activated independently of -γ-glutamyltranspeptidase. The down regulation of B8G3 antigen by these agents may provide a common focus for understanding the essential action of differentiation inducers in melanoma cells.  相似文献   

3.
Sodium butyrate (butyrate), 5-azacytidine (5Aza-C), dimethyl sulfoxide (DMSO), and dimethyl formamide (DMF) were applied to a human melanoma cell line for the purpose of inducing pigmentation and terminal differentiation. The results are summarized as follows: 1) butyrate, DMSO, and DMF had a strong cytostatic effect, arresting cells in the G1 phase of the cycle; 2) butyrate caused a morphological change to spindle shape whereas DMSO and DMF produced rounded cells, without affecting the levels of vimentin and intermediate filaments; 3) tyrosinase activity and melanization were stimulated by DMSO and DMF but not by butyrate; 4) butyrate induced several membrane-bound enzyme activities (alkaline phosphatase and gamma-glutamyl transpeptidase); 5) changes in the expression of antigens related to tyrosinase activity (2B7 and 5C12) only partly corresponded to the changes in enzyme activity; 6) expression of the melanosomal B8G3 antigen was decreased by butyrate, DMSO, and DMF; and 7) the action of DMF resembled that of DMSO whereas 5Aza-C had little effect. The results indicate that these differentiating agents activate different sets of genes, the melanogenic pathway being activated independently of gamma-glutamyltranspeptidase. The down regulation of B8G3 antigen by these agents may provide a common focus for understanding the essential action of differentiation inducers in melanoma cells.  相似文献   

4.
The stability of subtilisin BPN′ in organic solvents or cosolvent/water mixtures was studied as a function of the type and concentration of counterion at the time of freeze-drying, water concentration, and stirring speed/method. It was found that the enzyme is stabilized by high concentrations of counterion, at least at very high cosolvent concentrations. The type of counterion also has a remarkable impact on the enzyme stability; at high concentrations of DMF (dimethylformamide), multivalent counterions with low solubility in organic solvents are far superior to monovalent, soluble ones. Sodium citrate is the best salt tested in terms of enzyme stability, increasing the half life of the enzyme better than a millionfold over Tris in 99% DMF. The stability of the enzyme was found to have a complex dependence on the amount of water in the DMF. Enzyme lyophilized from the sodium phosphate displays a stability minimum at about 90% DMF, while enzyme lyophilized from Tris becomes increasingly unstable from 30% to 99% DMF, without inflection. Vigorous stirring with a magnetic stir bar, which broke apart the enzyme particles, was found to be extremely deleterious to enzyme stability, while swirling the enzyme with a wrist-action stirrer, which did not grind the enzyme particles, had no effect. Explanations for this are discussed.  相似文献   

5.
Commercially available proteases and lipases were screened for their ability to acylate regioselectively sucrose with divinyladipate either in pyridine or dimethylformamide (DMF). The protease (EC 3.4.21.62) from Bacillus subtilis (Proleather FG-F) exhibited the highest conversion (100% in 24 h of reaction in DMF) yielding sucrose 2-O-vinyladipate as main product. The enzyme preference for a secondary hydroxyl group is a distinct feature of this biocatalyst compared to others described in the literature. Two sets of chemically distinct silica supports were used for Proleather immobilization presenting terminal amino (S(APTES)) or hydroxyl groups (S(TESPM)(-)(pHEMA)). The percentage of immobilized enzyme was smaller in S(APTES) (7-17%) than in S(TESPM)(-)(pHEMA) (52-56%), yet Proleather immobilized into S(APTES) supports presented higher total and specific hydrolytic activity. The highest total and specific activities were obtained with S(TESPM)(-)(pHEMA) and S(APTES), respectively. Silicas with large pore (bimodal distribution of pores, 130/1200 A, denoted as S(1000)) presented higher specific activities relative to those with smaller pore sizes. Furthermore, the synthetic specific activity of S(1000)S(APTES) immobilized protease was ca. 10-fold higher than that of the free enzyme. In addition to sucrose, the immobilized protease was used to acylate methyl alpha-D-glucopyranoside, trehalose, and maltose in nearly anhydrous DMF. Finally, immobilized Proleather was reasonably stable, retaining ca. 55% activity after six reaction cycles.  相似文献   

6.
It has previously been shown that rats pre-treated with butylated hydroxyanisole (BHA), a well-known inducer of the enzyme DT-diaphorase, are protected against the toxic effects of 2-methyl-1,4-naphthoquinone but are made more susceptible to the harmful action of 2-hydroxy-1,4-naphthoquinone. In the present experiments, the effects of BHA have been compared with those of other inducers of DT-diaphorase. Rats were dosed with BHA, butylated hydroxytoluene (BHT), ethoxyquin (EQ), dimethyl fumarate (DMF) or disulfiram (DIS) and then challenged with a toxic dose of the naphthoquinones. All the inducers protected against the haemolytic anaemia induced by 2-methyl-1,4-naphthoquinone in rats, with BHA, BHT and EQ being somewhat more effective than DMF and DIS. A similar order of activity was recorded in the relative ability of these substances to increase hepatic activities of DT-diaphorase, consistent with a role for this enzyme in facilitating conjugation and excretion of this naphthoquinone. In contrast, all the compounds increased the haemolytic activity of 2-hydroxy-1,4-naphthoquinone. DMF and DIS were significantly more effective in this regard than BHA, BHT and EQ. DMF and DIS also caused a much greater increase in levels of DT-diaphorase in the intestine, suggesting that 2-hydroxy-1,4-naphthoquinone is activated by this enzyme in the gut. BHA, BHT and EQ had no effect on the nephrotoxicity of 2-hydroxy-1,4-naphthoquinone, but the severity of the renal lesions was decreased in rats pre-treated with DMF and DIS. The results of the present experiments show that modulation of tissue levels of DT-diaphorase may not only alter the severity of naphthoquinone toxicity in vivo, but may also change the relative toxicity of these substances to different target organs.  相似文献   

7.
The inactivation of lactate and malate dehydrogenases (LDH and MDH) modified by progesterone in the water-dimethylformamide (DMF) medium is described by the first-order equation up to large conversion degrees. The MDH modification is accompanied by the increase of its stability by 7-14%, while LDH modification leads to the enzyme stability decrease by 67%. The enzymes catalytic activities are changed simultaneously. The main factors of the stability and activity changes are the DMF influence upon the quaternary structure of the proteins at the modification and a hydrofobization of the external and internal protein sites by progesterone.  相似文献   

8.
The use of a diffusion filter is proposed to suppress the NMRsignals of small organic compounds in the presence of macromolecules.Combined with a spin-echo relaxation filter, the diffusion filter enablesthe selective and simultaneous detection of intermolecularsolvent–protein NOEs in a straightforward two-dimensional NOESYexperiment. Using the intermolecular NOEs observed betweenN,N-dimethylformamide (DMF) and hen egg-white lysozyme in an aqueoussolution containing 2 M DMF, the binding of DMF at thespecificity-determining substrate binding site C of the enzyme was modelled.  相似文献   

9.
Candida rugosa lipase (CRL) has been widely used as a biocatalyst for non-aqueous synthesis in biotechnological applications, which, however, often suffers significant loss of activity in organic solvent. Experimental results show that trehalose could actively counteract the organic-solvent-induced protein denaturation, while the molecular mechanisms still don’t unclear. Herein, CRL was used as a model enzyme to explore the effects of trehalose on the retention of enzymatic activity upon incubation in N,N-dimethylformamide (DMF). Results showed that both catalytic activity and conformation changes of CRL influenced by DMF solvent were inhibited by trehalose in a dose-dependent fashion. The simulations further indicated that the CRL protein unfolded in binary DMF solution, but retained the native state in the ternary DMF/trehalose system. Trehalose as the second osmolyte added into binary DMF solution decreased DMF-CRL hydrogen bonds efficiently, whereas increased the intermolecular hydrogen bondings between DMF and trehalose. Thus, the origin of its denaturing effects of DMF on protein is thought to be due to the preferential exclusion of trehalose as well as the intermolecular hydrogen bondings between trehalose and DMF. These findings suggest that trehalose protect the CRL protein from DMF-induced unfolding via both indirect and direct interactions.  相似文献   

10.
Subtilisin E was rationally engineered to improve its stability in polar organic solvents such as dimethylformamide (DMF). A charged surface residue, Asp248, was substituted by three amino acids of increasing hydrophobicity, Asn, Ala, and Leu; all three variants were stabilized with respect to wild type in 80% DMF. This stabilization was only observed in the presence of high concentrations of the organic solvent: no stability enhancements were observed in 40% DMF. In contrast, the mutation Asn218 --> Ser alters internal hydrogen bonding interactions and stabilizes subtilisin E in both 40% and 80% DMF. This study provides additional evidence that substitution of surface-charged residues is a generally useful mechanism for stabilizing enzymes in organic media and that the stabilizing effects of such substitutions are unique to highly altered solvent environments. The effects of the single amino acid substitutions on free energies of stabilization are additive in the Asp248 --> Asn + Asn218 --> Ser combination variant, yielding an enzyme that is 3.4 times more stable than wild type in 80% DMF.  相似文献   

11.
NF-κB acts as a signal transducer during tumor progression, cell invasion, and metastasis. Dimethylfumarate (DMF) is reported to inhibit tumor necrosis factor-α-induced nuclear entry of NF-κB/p65. However, only a few reports suggest that DMF inhibits tumor metastasis; also the molecular mechanisms underlying the inhibition of metastasis are poorly understood. We investigated the inhibition of tumor invasion and metastasis by DMF in a melanoma cell line, B16BL6. DMF inhibited B16BL6 cell invasion and metastasis by suppressing the expression and activities of MMPs. DMF also inhibited the nuclear entry of NF-κB/p65, thus inhibiting B16BL6 cell invasion and metastasis. These results suggest that DMF is potentially useful as an anti-metastatic agent for the treatment of malignant melanoma.  相似文献   

12.
Two different immobilized chymotrypsin derivatives were used to synthesize kyotorphin, using N-benzoyl-L-tyrosine ethyl ester and L-arginine ethyl ester as substrates, in water-DMF media. The first was adsorbed onto Celite particles and the second was multipoint covalently attached into polyacrylamide gel. In all cases, the conversion of the carboxyl substrate was carried out in first-order reaction conditions. For the adsorbed enzyme, the reaction kinetics deviated from first-order likely due to a fast irreversible inactivation of enzyme during the reaction time even at low DMF concentration (15-20% v/v). The covalent attachment of enzyme resulted in elimination of irreversible activity loss by organic solvent up to 60% (v/v) of DMF. The catalytic activity of the covalent derivative was conserved as appropriate for performing a synthetic reaction up to 60% v/v of DMF (in comparison to 30% v/v for the adsorbed derivative), showing a clear improvement in its stability against reversible denaturation by this solvent. The selectivity of the synthetic reaction was slightly enhanced (from 40-50%) with the increase in DMF concentration to 80% v/v, but it was significantly improved (to 80%) when L-argininamide was used as nucleophile.  相似文献   

13.
A bacterial strain DGVK1 capable of using N,N-dimethylformamide (DMF) as sole source of carbon and nitrogen was isolated from the soil samples collected from the coalmine leftovers. The molecular phylogram generated using the complete sequence of 16S rDNA of the strain DGVK1 showed close links to the bacteria grouped under Brucellaceae family that belongs to alphaproteobacteria class. Specifically, the 16S rDNA sequence of strain DGVK1 has shown 97% similarity to Ochrobactrum anthropi LMG 3331 (D12794). This bacterium has also shown impressive growth on dimethylamine, methylamine, formaldehyde and formate that are considered to be the prominent catabolic intermediates of DMF. DMF degradation has led to the accumulation of ammonia and dimethylamine contributing to the increase of pH of the medium. The DMF-grown resting cells of Ochrobactrum sp. DGVK1 have also contributed for the release of ammonia when resting cell suspension was added to phosphate buffer containing DMF. Similar experiments done with the glucose-grown cultures have not produced ammonia and thus indicating the inducible nature of DMF-degrading enzymes in Ochrobactrum sp. DGVK1. Further, dimethylformamidase, dimethylamine dehydrogenase and methylamine dehydrogenase, the key enzymes involved in the degradation of DMF, were assayed, and the activities of these enzymes were found only in DMF-grown cultures further confirming the inducible nature of the DMF degradation. Based on these results, DMF degradation pathway found in Ochrobactrum sp. DGVK1 has been proposed.  相似文献   

14.
Several kinds of modified chymotrypsin were prepared with water-soluble acylating reagents, and their characteristics after hydrolyzing with unmodified chymotrypsin in aqueous-N,N’ -dimethylformamide (DMF) media were compared. It was found that chymotrypsin (Csin), of which a 20% amino group was modified with a benzyloxycarbonyl group (Z(20)Csin), had more favorable characteristics than unmodified chymotrypsin with regard to hydrolytic activity in an aqueous DMF media. We also investigated the Z(20)Csin-catalyzed peptide synthesis in two different solution systems. In the one-layer system containing water and DMF, Z(20)Csin catalyzed the peptide bond formation in a higher yield than that by unmodifide chymotrypsin and enabled a synthetic reaction in even an 80% (v/v) DMF media, in which the hydrolytic reaction could not be carried out. Z(20)Csin catalyzed the condensation between some N-acyl amino acids or peptide derivatives and amino acids in 90% ethylacetate, 90% hexane or 50% benzene. This latter method employs a two-layer system, and the modified enzyme may be able to reduce the number of synthetic steps when preparing acyl peptides.  相似文献   

15.
16.
The N,N-dimethylformamide-hydrolyzing enzyme (DMFase) from Pseudomonas DMF 3/3 has been purified to apparent electrophoretic homogeneity with an overall 49-fold purification, a 24% yield and a final specific activity of 1.98 mumol N,N-dimethylformamide (DMF) hydrolyzed min-1 (mg protein)-1. The native DMFase has a relative molecular mass of 250 000 and is composed of two light-chain (Mr = 15 000) and two heavy-chain (Mr = 105 000) subunits. The stability of DMFase is optimal at pH values above 7.5 and at temperatures below 20 degrees C. The activity of the enzyme is inhibited by metal-chelating agents such as EDTA and 2,2'-dipyridyl. Emission and atomic absorption spectroscopy measurements showed that iron is present in significant amounts in DMFase, indicating that it is an iron-containing amidohydrolase. In the ultraviolet/visible spectrum prominent bands were observed at 224 nm, 280 nm and 396 nm and shoulders are present at 418 nm and 467 nm. DMFase from Ps. DMF 3/3 has an isoelectric point of 7.7. The enzyme exhibits optimal activity between pH 5 and 6 and at 40 degrees C. The substrate spectrum is rather narrow. The enzyme hydrolyzes preferentially substituted short-chain aliphatic amides such as DMF, N-ethylformamide and N-methylformamide. N,N-dimethylformamide, N,N-dimethylacetamide and unsubstituted amides, e.g. formamide, prolinamide, acetamide, acrylamide and butyramide are substrates as well, but are hydrolysed at significantly lower rates. DMFase obeys Michaelis-Menten kinetics and its Km and Vmax values for DMF are 13.8 mM and 1.89 U/mg, respectively, as determined from a Lineweaver-Burk plot.  相似文献   

17.
Q103R subtilisin E was isolated following random mutagenesis and screening for improved activity in the presence of dimethylformamide (DMF). Our goal is to identify the mechanism(s) by which amino acid substitutions can enhance enzyme activity in polar organic solvents. A quantitative framework for comparing substrate binding and catalytic activities of mutant and wild-type enzymes in the presence and absence of DMF is outlined. Kinetic experiments performed at high salt concentration (1M KCl) reveal that the mechanism behind the Q103R variant's enhanced activity toward succinyl-Ala-Ala-Pro-Phe-p-nitroanilide is both electrostatic and nonelectrostatic in origin. Favorable electrostatic interactions between the negatively charged succinyl group of the substrate and the positive charge on Arg 103 are responsible for tighter substrate binding. This conclusion is supported by kinetic experiments performed on the related substrate Ala-Ala-Pro-Phe-p-nitroanilide and the hydrolysis kinetics of the Q103E, Q103K, and Q103S variants constructed by site-directed mutagenesis. These results highlight the importance of the choice of the substrate used to screen for improvements in catalytic activity.  相似文献   

18.
The stability of papain was studied in aqueous-organic mixtures by means of residual proteolytic activity along with various spectroscopic analyses (fluorescence and ATR-FTIR combined with isotopic exchange with D2O). The investigated systems contained 1 or 10% (v/v) of an aqueous buffered solution (pH 8.0) in acetonitrile (ACN), methanol (MeOH) or dimethyl formamide (DMF). The results evidenced that papain retained almost all its catalytic activity after 24 h of incubation in the presence of ACN, and a more compact conformation of the enzyme was detected. Papain suffered an important loss of enzymatic activity (ca. 80%) after 24 h incubation in MeOH although, no global conformational change and minor secondary structure rearrangements were detected. This observation suggests that somehow the active site region was altered. On the other hand, papain suffered a complete inactivation when exposed to those media containing DMF. Fluorescence analyses revealed that an irreversible conformational change took place after 24 h incubation, and a moderate increase in β-sheet and β-turn structures was the most relevant finding when secondary structure was analyzed. The evidences demonstrated that the organic solvents induce a more rigid and compact structure of papain regardless of the organic:buffer ratio investigated. In turn, these modifications affect the active catalytic site in the particular case of MeOH and DMF. These findings were in agreement with the thermo-stability of the enzyme performed after heating at 353 K in all the studied media, that is the presence of ACN did not substantially affect the secondary structure of papain. Nevertheless, the α-helix domain demonstrated to be less thermally stable than the β-sheet domain, turning into aggregated structures after heating, especially in the presence of MeOH and DMF.  相似文献   

19.
Due to its potential as an antibiotic target, E. coli peptide deformylase (PDFEc) serves as a model enzyme system for inhibitor design. While investigating the structural–functional and inhibitory features of this enzyme, we unexpectedly discovered that 2-amino-5-mercapto-1,3,4-thiadiazole (AMT) served as a slow-binding inhibitor of PDFEc when the above compound was dissolved only in dimethylformamide (DMF), but not in any other solvent, and allowed to age. The time dependent inhibitory potency of the DMF-dissolved AMT was correlated with the broadening of the inhibitor's 295 nm spectral band toward the visible region, concomitant with the increase in the mass of the parent compound by about 2-fold. These data led to the suggestion that DMF facilitated the slow dimerization of AMT (via the formation of a disulfide bond), and that the dimeric form of AMT served as an inhibitor for PDFEc. The latter is not caused by the simple oxidation of sulfhydryl groups by oxidizing agents such as H2O2. Newly synthesized dimeric/dithiolated form of AMT (“bis-AMT”) exhibited similar spectral and inhibitory features as given by the parent compound when incubated with DMF. The computer graphic modeling data revealed that bis-AMT could be reliably accommodated within the active site pocket of PDFEc, and the above enzyme–ligand interaction involves coordination with the enzyme resident Ni2+ cofactor. The mechanism of the DMF-assisted activation of AMT (generating bis-AMT), the overall microscopic pathway for the slow-binding inhibition of PDFEc by bis-AMT, and the potential of bis-AMT to serve as a new class of antibiotic agent are presented.  相似文献   

20.
N,N-Dimethylformamide (DMF) is an organic solvent extensively used in industries such as synthetic leather, fibers and films, and induces liver toxicity and carcinogenesis. Despite a series of experimental and clinical reports on DMF-induced liver failure, the mechanism of toxicity is yet unclear. This study investigated whether DMF in combination with a low dose of hepatotoxicant enhances hepatotoxicity, and if so, on what mechanistic basis. Treatment of rats with either DMF (50–500 mg/kg/day, for 3 days) or a single low dose of CCl4 (0.2 ml/kg) alone caused small increases in plasma transaminases and lactate dehydrogenase activities. However, combinatorial treatment of DMF with CCl4 markedly increased blood biochemical changes. Histopathology confirmed the synergism in hepatotoxicity. Moreover, DMF + CCl4 caused PARP cleavage and caspase-3 activation, but decreased the level of Bcl-xL, all of which confirmed apoptosis of hepatocytes. Consistently, DMF + CCl4 treatment markedly increased lipid peroxidation. By contrast, treatment of DMF in combination with lipopolysaccharide, acetaminophen or d-galactosamine caused no enhanced hepatotoxicity. Given the link between endoplasmic reticulum (ER) dysfunction and cell death, ER stress response was monitored after DMF and/or CCl4 treatment. Whereas either DMF or CCl4 treatment alone marginally changed the expression levels of glucose-regulated protein 78 and 94 and phosphorylated PKR-like ER-localized eIF2α kinase, concomitant treatment with DMF and CCl4 synergistically induced them with increases in glucose-regulated protein 78 and C/EBP homologous protein mRNAs. Our results demonstrate that DMF treatment in combination with CCl4 synergistically increases hepatocyte death, which may be associated with the induction of severe ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号