首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation of (2S, 3R)-methyl 3-phenylglycidate via enantioselective hydrolysis of racemic phenylglycidate was carried out using whole cells of Pseudomonas putida. Under optimal conditions (2S, 3R)-methyl-3-phenylglycidate could be got with ee value 99 and 48% chemical yield.  相似文献   

2.
The lipase-catalyzed production of optically active (S)-flurbiprofen was carried out in a dispersion reaction-system induced by chiral succinyl β-cyclodextrin (suβ-CD). The optimal reaction conditions were 500 mM (R,S)-flurbiprofen ethyl ester ((R,S)-FEE), 600 units of Candida rugosa lipase per 1 mmol of (R,S)-FEE, and 1000 mM suβ-CD at 37 °C for 72 h. An extremely high enantiomeric excess of 0.98 and conversion yield of 0.48 were achieved in the dispersed aqueous phase reaction system containing chiral suβ-CD added as a dispenser and chiral selector. The inclusion complex formability of the immiscible substrate (S)- and (R)-form of FEE with suβ-CD was compared using a phase-solubility diagram, DSC, and 1H NMR. (S)-Isomer formed a more stable and selective inclusion complex with chiral suβ-CD. It was hydrolyzed much more selectively by lipase from C. rugosa, due to the selective structural modification through inclusion complexation with chiral suβ-CD.  相似文献   

3.
Optically active (S)-flurbiprofen was produced fed-batch-wisely in a lipase-catalyzed dispersed aqueous phase reaction system induced by succinyl β-cyclodextrin (suβ-CD). A highly concentrated 480 mM (S)-flurbiprofen, corresponding to 117.0 g/l, with an enantiomeric excess of 0.98 and conversion yield of 0.48 was obtained. (S)-Flurbiprofen produced in an inclusion complex form with suβ-CD was extractively purified using three-step procedures: decomplexation of (S)-flurbiprofen and residual (R)-flurbiprofen ethyl ester ((R)-FEE) using the ethyl acetate, dissolution of (S)-flurbiprofen from (R)-FEE using a sodium bicarbonate solution, and selective precipitation of (S)-flurbiprofen using 2-propanol. Consequently, an extremely high concentration of 420 mM (S)-flurbiprofen with an optical purity higher than 98% was recovered after purification.  相似文献   

4.
Enantioselective reductions of p-X-C6H4C(O)CH2N3 (X = H, Cl, Br, CH3, OCH3) mediated by Rhodotorula glutinis and Geotrichum candidum afforded the corresponding alcohols with complementary R and S configurations, respectively, in excellent yield and enantiomeric excesses. The obtained (R)-azidoalcohols are important starting materials for preparation of natural products and valuable pharmaceutical compounds such as (R)-Tembamide and (R)-Aegeline.  相似文献   

5.
Whole cells of Rhodococcus erythropolis DSM 44534 grown on ethanol, (R)- and (S)-1,2-propanediol were used for biotransformation of racemic 1,4-alkanediols into γ-lactones. The cells oxidized 1,4-decanediol (1a) and 1,4-nonanediol (2a) into the corresponding γ-lactones 5-hexyl-dihydro-2(3H)-furanone (γ-decalactone, 1c) and 5-pentyl-dihydro-2(3H)-furanone (γ-nonalactone, 2c), respectively, with an EE(R) of 40–75%. The transient formation of the γ-lactols 5-hexyl-tetrahydro-2-furanol (γ-decalactol, 1b) and 5-pentyl-tetrahydro-2-furanol (γ-nonalactol, 2b) as intermediates was observed by GC–MS. 1,4-Pentanediol (3a) was transformed into 5-methyl-dihydro-2(3H)-furanone (γ-valerolactone, 3c) whereas (R)- and (S)-2-methyl-1,4-butanediol (4a) was converted to the methyl-substituted γ-butyrolactones 4-methyl-dihydro-2(3H)-furanone (4c1) and 3-methyl-dihydro-2(3H)-furanone (4c2) in a ratio of 80:20 with a yield of 55%. Also cis-2-buten-1,4-diol (5a) was transformed resulting in the formation of 2(5H)-furanone (γ-crotonolactone, 5c). At the higher pH values of 8.8 the yield of lactone formed was improved; however, the enatiomeric excesses were slightly higher at the lower pH of 5.2.  相似文献   

6.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

7.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


8.
The quantitative carotenoid composition of the red flower petals of Adonis annua is reported. Optically pure (3S, 3′S)-astaxanthin occurs both as a diester (64% of total carotenoid) and as a monoester (11%). The optical purity was determined by hydrolysis of the natural esters in the absence of oxygen and subsequent HPLC analysis of the paren -ketol esterified with (−)-camphanic acid. All non-animal sources hitherto examined synthesize pure 3S,3′S- or 3R,3′R-isomers of astaxanthin, whereas marine animal sources contain mixtures of all three optical isomers, including the meso form.  相似文献   

9.
Enzymatic esterification of optically inactive zeaxanthin with propanoic or palmitic acid in hexane with Candida cylindracea lipase gave the corresponding (3R,3'R)-diesters in 20% and 50% ee, respectively. When using the optically pure enantiomers the enzymatic esterification rate of (3R,3'R)-zeaxanthin was higher than for the enantiomer.  相似文献   

10.
From the culture filtrate of the fungus Botryodiplodia theobromae five hydroxylated cyclopentane fatty acids of the jasmonic acid type were isolated and identified as (11 S -(-)-hydroxyjasmonic acid; (11R)-(-)-hydroxyjasmonic acid; (-)-12-hydroxyjasmonic acid; (-)-8ξ-hydroxyjasmonic acid; (-)-3-oxo-2-(1ξ-hydroxy-2Z-pentenyl)cyclopent-1-yl-butyric acid; (-)-3-oxo-2(4ξ-hydroxy-2Z-pentenyl)cyclopent-1-yl-butyric acid. In addition, the corresponding hydroxylated iso-jasmonic acid analogues were found as minor constituents. During silica gel chromatography 11,12-didehydrojasmonic acid, 11ξ-acetoxyjasmonic acid, 3-oxo-2-(4ξ-acetoxy-2Z-pentenyl)cyclopent-1-yl-butyric acid 3-oxo-2-(2Z,4-pentadienyl)cyclopent-1-yl-butyric acid were formed as artefacts.  相似文献   

11.
Quantitative carotenoid analysis of a natural bloom of Euglena sanguinea Ehrenberg revealed the presence of β,β-carotene (1% of total carotenoids), monoesters of adonirubin (3%), diesters of (3S, 3′R)-adonixanthin (13%), diesters of (3S, 3′S)-astaxanthin (75%), 19-monoester of (3R, 3′R, 6R)-loroxanthin (1%), (3R, 3′R)-diatoxanthin (6%), diadinoxanthin (1%) and neoxanthin (traces). The carotenoid content amounted to 0.7% of the dry wt. Methods employed included TLC, HPLC, VIS, MS, CD and H NMR (400 and 500 MHz). The high content of ketocarotenoids is characteristic of secondary carotenoids produced under stressed growth conditions. Previously secondary carotenoids were associated with green algae (Chlorophyceae), but have now been encountered in Euglenophyceae.  相似文献   

12.
Synthesis of lobucavir prodrug, L-valine, [(1S,2R,3R)-3-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (BMS 233866), requires regioselective coupling of one of the two hydroxyl groups of lobucavir (BMS 180194) with valine. Either hydroxyl group of lobucavir could be selectively aminoacylated with valine by using enzymatic reactions. N-[(Phenylmethoxy)carbonyl]-L-valine, [(1R,2R,4S)-2-(2-amino-6-oxo-1H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester (3, 82.5% yield), was obtained by selective hydrolysis of N,N′-bis[(phenylmethoxy)carbonyl]bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester (1) with lipase M, and L-valine, [(1R,2R,4S)-2-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (4, 87% yield) was obtained by hydrolysis of bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester, dihydrochloride (2), with lipase from Candida cylindracea. The final intermediate for lobucavir prodrug, N-[(phenylmethoxy)carbonyl]-L-valine, [(1S,2R,4R)-3-(2-amino-6-oxo-1H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester (5), could be obtained by transesterification of lobucavir using ChiroCLEC™ BL (61% yield), or more selectively by using immobilized lipase from Pseudomonas cepacia (84% yield).  相似文献   

13.
The ligand 1,4,7-triazacyclononane-1,4,7-tris[2′(R)-2′-propionate](-3)((R)-tacntp3−), binds stereospecifically to transition metal ions. The structures of the complexes [Cr((R)-tacntp)]·NaBr and [Fe((R)-tacntp)]·H2O have been determined by X-ray crystallography. Both complexes have the Λ-configuration but the conformation of the chelate rings in Λ-[Cr((R)-tacntp)] is (λ,λ,λ) with a geometry close to octahedral while in Λ-[Fe((R)-tacntp)] it is (δ,δ,δ) and the geometry is closer to that of a trigonal prism. Chiral induction in the electron transfer reactions of Λ-[Co((R)-tacntp)], Λ-[Fe((R)-tacntp)] and Λ-[Mn((R)-tacntp)] with [Co((RR,SS)-chxn)3]2+ has been investigated. All three reactions are outer-sphere and four isomeric [Co((RR,SS)-chxn)3]3+ products are identified in each case. The oxidants Λ-[Fe((R)-tacntp)] and Λ-[Mn((R)-tacntp)] show very similar selectivities, quite different from those of Λ-[Co((R)-tacntp)]. Reasons for this behavior are discussed.  相似文献   

14.
Rhodococcus rhodochrous IFO 15564 enantioselectively hydrolysed racemic 3-benzoyloxypentanenitrile and 3-benzoyloxypentanamide to afford (R)-amide and (S)-car☐ylic acid with high enantiomeric excess (> 90%). In this reaction, both enantiomers of the starting nitrile were converted to the amide by nitrile hydratase, and amidase-catalysed enantioselective hydrolysis of the amide was responsible for the kinetic resolution. The lack of enantioselectivity of the nittile hydratase toward the racemic nitrile forms a marked contrast to the case of previously reported highly enantioselective conversion of prochiral 3-benzoyloxypentanedinitrile by this enzyme. since (R)-amide could be hydrolysed chemically to (R)-car☐ylic acid without any loss of its ee, the present microbial kinetic resolution serves as an effective method for preparing both enantiomers of synthetically useful 3-hydroxypentanoic acid derivatives.  相似文献   

15.
The synthesis of optically active 5-acetoxy-3-(p-fluorophenoxy)-1-pentanol 4, for the synthesis of the potent β-blocker R-67555, bis[2-(2-chromanyl-6-fluoro)-2-hydroxyethyl]amine 1, was investigated. The acetylation of 3-(p-fluorophenoxy)-1,5-pentanediol 5a using lipozyme and the hydrolysis of 1,5-diacetoxy-3-(p-fluorophenoxy)pentane 5b using lipase Amano P yielded (3S)- and (3R)-5-acetoxy-3-(p-fluorophenoxy)-1-pentanol 4, respectively, with high enantiomeric excess. Four diastereomers of (6-fluoro-2-chromanyl)oxirane 2, important intermediates for the synthesis of R-67555, were synthesized by chemical methods using (S)-4 and (R)-4.  相似文献   

16.
The absolute configuration at C-12 of pittosporatobiraside A and B isolated from the leaves of Pittosporum tobira was determined to be S on the basis of the exciton chirality of their dibenzoate derivative. The structures of the two glycosides were thus established to be (1S,9S,10S,11S,12S,14R,16R)-12-[(Z)-2-methyl-1-oxo-2-butenyl]-6,14-dimethyl-2-methylene-9-(1-methylethyl)-15,17-dioxatricyclo[8.7.0.011,16]heptadec-5-en-13-one and (1S,9S,10S,11S,12S,14R,16R)-12-(3-methyl-1-oxo-2-butenyl)-6,14-dimethyl-2-methylene-9-(1-methylethyl)-15,17-dioxatricyclo [8.7.0.011,16]heptadec-5-en-13-one, respectively.  相似文献   

17.
Diacylglycerophosphocholines containing (R)-3-, (R)-12-, (R)-17-hydroxy octadeca(e)noic acids and the corresponding racemates were synthesized and purified to homogeneity. The influence of the position of the hydroxy group on the monolayer packing properties of these fatty acids and their phosphatidylcholines was studied by Langmuir techniques and 1,2-di-[(R)-12-hydroxy-octadec-cis-9-enyl]-sn-glycero-3-phosphocholine displayed the largest lift-off area (330 Å2/molecule). This result was in line with the thermotropic phase behavior of these phospholipids, as measured by differential scanning calorimetry (DSC): the gel- to liquid-crystalline phase transition temperature (Tm) passed through a minimum of −15.1°C for 1,2-di-[(R)-12-hydroxy-octadec-cis-9-enyl]-sn-glycero-3-phosphocholine.  相似文献   

18.
The use of (R)-specific enoyl-coenzyme A (CoA) hydratase (PhaJ) provides a powerful tool for polyhydroxyalkanoate (PHA) synthesis from fatty acids or plant oils in recombinant bacteria. PhaJ provides monomer units for PHA synthesis from the fatty acid ß-oxidation cycle. Previously, two phaJ genes (phaJ1Pa and phaJ2Pa) were identified in Pseudomonas aeruginosa. This report identifies two new phaJ genes (phaJ3Pa and phaJ4Pa) in P. aeruginosa through a genomic database search. The abilities of the four PhaJPa proteins and the (R)-3-hydroxyacyl-acyl carrier protein [(R)-3HA-ACP] dehydrases, FabAPa and FabZPa, to supply monomers from enoyl-CoA substrates for PHA synthesis were determined. The presence of either PhaJ1Pa or PhaJ4Pa in recombinant Escherichia coli led to the high levels of PHA accumulation (as high as 36–41 wt.% in dry cells) consisting of mainly short- (C4–C6) and medium-chain-length (C6–C10) 3HA units, respectively. Furthermore, detailed characterizations of PhaJ1Pa and PhaJ4Pa were performed using purified samples. Kinetic analysis revealed that only PhaJ4Pa exhibits almost constant maximum reaction rates (Vmax) irrespective of the chain length of the substrates. The assay for stereospecific hydration revealed that, unlike PhaJ1Pa, PhaJ4Pa has relatively low (R)-specificity. These hydratases may be very useful as monomer-suppliers for the synthesis of designed PHAs in recombinant bacteria.  相似文献   

19.
The optimization of a continuous enzymatic reaction yielding (R)-(−)-phenylacetylcarbinol ((R)-PAC), a key intermediate of the (1R,2S)-(−)-ephedrine synthesis, is presented. We compare the suitability of different mutants of the pyruvate decarboxylase (PDC) from Zymomonas mobilis with respect to their application in biotransformation using pyruvate or acetaldehyde and benzaldehyde as substrates, respectively. Starting from 90 mM pyruvate and 30 mM benzaldehyde, (R)-PAC was obtained with a space time yield of 27.4 g/(L·day) using purified PDCW392I in an enzyme-membrane reactor. Due to the high stability of the mutant enzymes PDCW392I and PDCW392M towards acetaldehyde, a continuous procedure using acetaldehyde instead of pyruvate was developed. The kinetic results of the enzymatic synthesis starting from acetaldehyde and benzaldehyde demonstrate that the carboligation to (R)-PAC is most efficiently performed using a continuous reaction system and feeding both aldehydes in equimolar concentration. Starting from an inlet concentration of 50 mM of both aldehydes, (R)-PAC was obtained with a space-time yield of 81 g/(L·day) using the mutant enzyme PDCW392M. The new reaction strategy allows the enzymatic synthesis of (R)-PAC from cheap substrates free of unwanted by-products with potent mutants of PDC from Z. mobilis in an aqueous reaction system.  相似文献   

20.
Cobalt(III) complexes with a thiolate or thioether ligand, t-[Co(mp)(tren)]+ (2), t-[Co(mtp)(tren)]2+ (1Me) and t-[Co(mta)(tren)]2+ (2Me), (mp = 3-mercaptopropionate, MA = 3-(methylthio)propionate and MTA = 2-(methylthio)acetate) have been prepared in aqueous solutions. The crystal structures of 1, 2, 1Me and 2Me were determined by X-ray diffraction methods. The crystal data are as follows, t-[Co(mp)(tren)]ClO4 (1CIO4): monoclinic, P21/n, A = 10.877(8), B = 11.570(4), c = 12.173(7) Å, β = 92.20(5)°, V = 1531(1) Å3, Z = 4 and R = 0.060; t-[Co(ma)(tren)]Cl·3H2O (2Cl·3H2O): monoclinic, P21/n, a = 7.7688(8), B = 27.128(2), C = 7.858(1) Å, β = 100.63(1)°, V = 1627.7(3) Å3, Z = 4 and R = 0.066; (+)465CD-t-[Co(mtp)(tren)](ClO4)2 ((+)465CD-1Me(ClO4)2): orthorhombic, P212121, A = 10.6610(7), B = 11.746(1), C = 15.555(1) Å, V = 1947.9(3) Å3, Z = 4 and R = 0.068; (+)465CD-t-[Co(mta)(tren)](ClO4)2 ((+)465CD-2Me(ClO4)2): orthorhombic, P212121, a = 10.564(1), B = 11.375(1), C = 15.434(2) Å, V = 1854.7(4) Å3, Z = 4 and R = 0.047. All central Co(III) atoms have approximately octahedral geometry, coordinated by four N, one O, and one S atoms. All of the complexes are only isomer, of which the sulfur atom in the didentate-O,S ligands are located at the trans position to the tertiary amine nitrogen atom of tren. 1 and 1Me contain six-membered chelate ring, and 2 and 2Me do five-membered chelate ring in the didentate ligand. The chirality of the asymmetric sulfur donor atom in (+)465CD-1Me is the S configuration and that in (+)465CD-2Me is the R one. The 1H NMR, 13C NMR and electronic absorption spectral behaviors and electrochemical properties of the present complexes are discussed in relation to their stereochemistries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号