首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The numbers, distribution, and types of neurons in a pedal disk of Hydra littoralis were determined from electron micrographs of 567 serial sections approximately 0.12 micron thick. Of 248 neurons counted, we found 234 ganglion cells in the epidermis and 14 in the gastrodermis. No sensory cells with surface projecting cilia were observed in either epithelial layer of the foot region. We found ciliary structures in 196 (84%) of the epidermal neurons: 55 had a well defined cilium-stereociliary complex, 30 had a cilium lacking stereocilia, and 111 could not be classified. In contrast, 38 epidermal neurons lacked evidence of ciliary structures; 10 of the 14 gastrodermal neurons had one or more centrioles, some with an elaborate pericentriolar rootlet system, but no cilium or stereocilia. Neuronal perikarya could be classified into those with dense heterochromatic nuclei and those with light granular nuclei; often these two nuclear variations were observed in paired or triad arrangements of epidermal neurons. In addition, 68 (29%) of the epidermal neurons were characterized by the presence of small dense granules (115-178 nm in diameter) in the cytoplasm around the periciliary space. Although 32 pairs and 5 triads of contiguous neuronal perikarya were present in the epidermis, only two paired neuronal perikarya were present in the gastrodermis. The major concentration of neurons was approximately midway between the basal surface and the region of transition of epitheliomuscular cells into glandulomuscular cells. There was no evidence of large neuronal aggregations suggestive of ganglia in the pedal disk.  相似文献   

2.
Summary The battery mother cell complexes in the tentacles ofHydra vulgaris contain a neuronal cell known as sensorimotor interneuron that is characterized by a modified cilium lying parallel to the mesoglea. The cilium is surrounded by up to three rings of microvilli. Microvilli and cilium arise in an unusual antiparallel orientation from the opposite poles of a central cellular cavity. The lumen of this cavity communicates with the extracellular environment by way of a straight channel-like opening that is encircled by the microvillar rings. The modified cilium extends into the channel and terminates outside in the intercellular space. The wall of the cavity and the channel are stabilized by bundles of microtubules. A prominent glycocalyx interconnects all microvilli and links the innermost microvillar ring to the cilium. Within this contact region approximately 0.7 m in length the ciliary axoneme is specifically modified: all nine microtubule doublets and up to six additional microtubules are embedded in electron-dense material. The microtubule doublets are connected to the ciliary membrane by ledges of Y-shaped cross-bridging elements. These axonemal modifications resemble those known from the hydrozoan cnidocil complex or from the outer segments of insect mechanoreceptor cells. Distribution and orientation of the sensorimotor interneuron within the tentacles indicate a mechanosensory function of the cell similar to that of chordotonal receptors of insects.  相似文献   

3.
The electron microscope was used to study the structure and three dimensional relationships of the components of the body cortex in thin sections of Paramecium multimicronucleatum. Micrographs of sections show that the cortex is covered externally by two closely apposed membranes (together ~250 A thick) constituting the pellicle. Beneath the pellicle the surface of the animal is molded into ridges that form a polygonal ridgework with depressed centers. It is these ridges that give the surface of the organism its characteristic configuration and correspond to the outer fibrillar system of the light microscope image. The outer ends of the trichocysts with their hood-shaped caps are located in the centers of the anterior and posterior ridges of each polygon. The cilia extend singly from the depressed centers of the surface polygons. Each cilium shows two axial filaments with 9 peripheral and parallel filaments embedded in a matrix and the whole surrouned by a thin ciliary membrane. The 9 peripheral filaments are double and these are evenly spaced in a circle around the central pair. The ciliary membrane is continuous with the outer member of the pellicular membrane, whereas the plasma membrane is continuous with the inner member of the pellicular membrane. At the level of the plasma membrane the proximal end of the cilium is continuous with its tube-shaped basal body or kinetosome. The peripheral filaments of the cilium, together with the material of cortical matrix which tends to condense around them, form the sheath of the basal body. The kinetodesma connecting the ciliary kinetosomes (inner fibrillar system of the light microscopist) is composed of a number of discrete fibrils which overlap in a shingle-like fashion. Each striated kinetosomal fibril originates from a ciliary kinetosome and runs parallel to other kinetosomal fibrils arising from posterior kinetosomes of a particular meridional array. Sections at the level of the ciliary kinetosomes reveal an additional fiber system, the infraciliary lattice system, which is separate and distinct from the kinetodesmal system. This system consists of a fibrous network of irregular polygons and runs roughly parallel to the surface of the animal. Mitochondria have a fine structure similar in general features to that described for a number of mammalian cell types, but different in certain details. The structures corresponding to cristae mitochondriales appear as finger-like projections or microvilli extending into the matrix of the organelle from the inner membrane of the paired mitochondrial membrane. The cortical cytoplasm contains also a particulate component and a system of vesicles respectively comparable to the nucleoprotein particles and to the endoplasmic reticulum described in various metazoan cell types. An accessory kinetosome has been observed in oblique sections of a number of non-dividing specimens slightly removed from the ciliary kinetosome and on the same meridional line as the cilia and trichocysts. Its position corresponds to the location of the kinetosome of the newly formed cilium in animals selected as being in the approaching fission stage of the life cycle.  相似文献   

4.
Craspedella has a non-ciliated epidermis with nuclei located in the epidermis and with short microvilli. There is a thin basal lamina and thick underlying fibrous matrix. Rhabdites are secreted through ducts lined by microtubules. Multiciliate sense receptors consist of bundles of dendrites in a depression of the epidermis. Each dendrite has a cilium with a cross-striated rootlet; there are no electron-dense collars. Spermatozoa have peripheral microtubules which in cross-section are arranged in a ring-like or spiral fashion, numerous electron-dense granules, mitochondria and a nucleus; axonemes of the 9 +'1'type are free for most of their length. Centrioles occur in some nerve fibres. In Didymorchis parts of the epidermis are ciliated and epidermal perikarya are 'insunk', connected to the surface part of the epidermis by a single cytoplasmic process. Epidermal cilia have cross-striated vertical and horizontal rootlets. In the ciliary tips a short electron-dense rod along the central pair of tubules extends to the tip, where it widens to become a terminal plate; peripheral doublets gradually disappear by losing their microtubules. Receptors observed are uniciliate. Spermatozoa are as in Craspedella . Ultrastructural evidence indicates that Craspedella and Didymorchis arc closely related and belong to the Rhabdocoela.  相似文献   

5.
This study confirms and extends previous work on the lateral cilia of the fresh-water mussel, Elliptio complanatus, in support of a "sliding filament" mechanism of ciliary motility wherein peripheral filaments (microtubules) do not change length during beat (see Satir, 1967). Short sequences of serial sections of tips are examined in control (nonbeating) and activated (metachronal wave) preparations. Several different tip types, functional rather than morphogenetic variants, are demonstrated, but similarly bent cilia have similar tips. The peripheral filaments are composed of two subfibers: a and b. The bent regions of cilia are in the form of circular arcs, and apparent differences in subfiber-b length at the tip are those predicted solely by geometry of the stroke without the necessity of assuming filament contraction. Various subfibers b apparently move with respect to one another during beat, since small systematic variations in relative position can be detected from cilium to cilium. While subfiber-b lengths are uniform throughout, subfiber-a lengths are morphologically different for each filament: 8 and 3 are about 0.8 µ longer than 1, 4 and 5, but each unique length is independent of stroke position or tip type. Subfiber-a does not contract, nor does it move, e.g. slide, with respect to subfiber-b of the same doublet. The central pair of filaments extends to the tip of the cilium where its members fuse. Subunit assembly in ciliary microtubules is evidently precise. This may be of importance in establishing the relationships needed for mechanochemical interactions that produce sliding and beat.  相似文献   

6.
We have examined thin sections and replicas of freeze-fractured cilia of Tetrahymena pyriformis. The ciliary necklace located at the base of all freeze-fractured oral and somatic cilia has been studied in thin sections. Since electron-dense linkers have been found to connect both microtubule doublets and triplets to the ciliary membrane at the level of the necklace, the linkers and the associated necklace seem to be related to the transition region between the doublets and triplets of a cilium. Plaque structures, consisting of small rectangular patches of particles located distal to the ciliary necklace, are found in strain GL, but are absent in other strains examined in this study. In freeze-cleaved material, additional structural differentiations are observed in the distal region of the ciliary membranes of somatic and oral cilia. Somatic cilia contain many randomly distributed particles within their membrane. Oral cilia can be divided into three categories on the basis of the morphology of their freeze-fractured membranes: (a) undifferentiated cilia with very few randomly distributed particles: (b) cilia with particles arranged in parallel longitudinal rows spaced at intervals of 810–1080 Å that are located on one side of the cilium; and (c) cilia with patches of particles arranged in short rows oriented obliquely to the main axis of the cilium. The latter particles, found on one side of the cilium, seem to serve as attachment sites for bristles 375–750 Å long and 100 Å wide which extend into the surrounding medium. The particles with bristles are located at the tips of cilia in the outermost membranelle and may be used to detect food particles and/or to modify currents in the oral region so that food particles are propelled more efficiently into the buccal cavity. Examination of thin-sectioned material indicates that the particles in oral cilia which form the longitudinal rows could be linked to microtubule doublets. Linkage between microtubule doublets and adjacent membrane areas on one side of the cilium could modify the form of ciliary beat by restricting the sliding of the microtubules. It is suggested that membrane-microtubule interactions may form the basis for the various forms of ciliary beat observed in different organisms.  相似文献   

7.
The connecting cilium of rat retinal rods was studied by freeze-fracture and thin-sectioning techniques. Transverse strands of intramembranous particles could be observed on fracture face B on the ciliary plasma membrane. The strands were essentially similar to those found at the transitional zone of motile cilia ("ciliary necklace"). The larger number of intramembranous particles obscured the pattern on fracture face A of the membrane. On longitudinal sections of the cilia, beads showing a periodicity similar to the necklace strands were observed. Each bead consisted of two structures apposed to both sides of the plasma membrane. Transverse sections of the cilia revealed radial Y-shaped structures that connected each ciliary doublet with the plasma membrane. Axial tubules, central sheath, radial spokes and dynein arms were missing in the connecting cilium. Comparing the fine structure of the retinal cilia with that of motile cilia it becomes evident that the connecting cilium is analogous in structure with the transitional zone of motile cilia. The present observations suggest that periodic membrane beads along the plasma membrane on thin sections correspond to strands of necklace particles as observed on freeze-fractured membranes. The arrangement of the particles in transverse strands is probably ensured by the radial connecting structures.  相似文献   

8.
W L Dentler 《Tissue & cell》1977,9(2):209-222
Cytochemical localization of ATPase activities in cilia and basal bodies of Tetrahymena pyriformis revealed a number of possible sites of ATPases. In basal bodies, reaction product was localized on the periphery of basal body microtubules, in the core of the B-microtubules, on the dense basal body core, and on the basal plate; some reaction product was associated with the postciliary and basal microtubules. In the cilium, reaction product was associated with the ciliary membrane, the basal granule, the periphery of the outer doublet microtubules, in the core of the B-microtubules, and on the arms and either the central microtubules or the radial spoke heads. Reaction product deposition required ATP and either Ca2+ or Mg2+ or ADP and Mg2+. When incubated in the presence of ATP and Na+, reaction product was only found at the base of the cilium in the region of the ciliary necklace. Implications of the various sites of activity are discussed with respect to possible mechanisms of ciliary motility.  相似文献   

9.
A primary cilium was frequently observed in the endocrine alpha, beta and delta cells, as well as in the excretory duct cells of the pancreas of normal mice and rats. The characteristic components of the cilium including the basal body, axoneme (shaft), and terminal part were clearly recognizable. The basal body or distal centriole surrounded by Golgi vesicles was perpendicularly oriented to the proximal centriole, and a dense striated band was seen filling the gap between them. The microtubules of the basal body consisted of nine peripheral triplets exhibiting a 9 + 0 pattern, an appearance similar to that of the proximal centriole. Rootlets, basal feet and alar sheets associated with the basal body were occasionally seen. The axoneme usually consisted of a 9 + 0 pattern of microtubule doublets, but other irregular patterns of 7 + 2, 7 + 3, and 8 + 1 were also seen. The microtubules in the terminal part of the cilium became fewer in number and had no peculiar arrangement. The cilium of the endocrine cells always projected into the intercellular canaliculus and was covered by the ciliary sheath, and occasionally, double cilia were visualized in the vicinity of beta cells. In the excretory duct cells, the cilium showed similar features, but it was slightly longer and always projected into the dense secretory content of duct lumen. On the other hand, no primary cilium was ever observed in the acinar cells of mouse and rat pancreas. In conclusion, the present study describes the morphology of primary cilia and its associated components in the endocrine and excretory duct cells of the pancreas of mice and rats. The findings suggest that the primary cilium should be considered as a constant intracellular organelle though its function and significance remain speculative.  相似文献   

10.
Summary The embryonic development of palpal contact chemosensitive sensilla was studied from 42% of development up to the hatching of the larvae. Ciliogenesis of the sensory cells can be observed at the earliest stages investigated. A complex consisting of two basal bodies and a cap-like ciliary vesicle is localized in the dendritic inner segment. It migrates apically and fuses with the cytoplasmic membrane. At the same time, microtubule doublets of the distal basal body elongate, thus generating the dendritic outer segment. Furthermore, the typical accessory structures of a motile cilium are formed. Although the central pair of microtubules is lacking, the dendritic outer segment can be considered as a modified motile cilium. At about 84% of development the hair structure starts to be formed. Whereas the socket is generated by the tormogen cell, the trichogen cell produces the hair shaft and terminal porus. The dendrite sheath, which rises above the newly formed hair, is attached apically to the embryonic cuticle forming an irregular pore. In larvae and imagines, the inner surface of the dendrite sheath is highly differentiated. A range of circular ledges and filamentous structures wrapping around the dendritic outer segments can be distinguished. These may have a stabilizing function. Furthermore, in cryofixed specimens, the dendritic outer segments possess regularly spaced swellings which are about 1 m in length and about 0.5 m in diameter. Their functional significance is still unclear.  相似文献   

11.
Tissues from the pharynx of five representative species of the protochordates (subphylum Tunicata, the three classes Ascidiacea, Thaliacea and Appendicularia, and subphylum Cephalochordata) were examined in both thin sections and freeze-fracture replicas. In all species, the stigmatal cilia of the branchial chamber are neatly arranged and move continuously to propel sea-water in a fixed direction for respiration and feeding of the organism. A number of specializations are found in the basal region of these cilia and are represented by: a) bridges connecting axonemal doublets numbers 5 and 6; b) dense fibrous material linking the doublet microtubules of the axoneme to the ciliary membrane, sometimes in the shape of longitudinal strands or as clusters of filaments; c) intramembrane particles (IMPs) associated with the P-face of the membrane, often arranged in clusters evenly aligned along the ciliary shaft in relation to the underlying axonemal doublets. Ciliary specializations are distributed along the plane of the effective stroke of the beat in both the ascidian Botryllus schlosseri and in the thaliacean Pyrosoma atlanticum and the amphioxus Branchiostoma lanceolatum, whereas in the thaliacean Doliolum nationalis and the appendicularian Oikopleura dioica a more uniform distribution of these specializations all around the basal portion of the cilia is observed. Whatever the disposition of the ciliary specializations in all the examined species, they are always present at the base of the water-propelling cilia. Some morphological evidence suggests that these specializations play a mechanical function in tethering the ciliary membrane to the axoneme. We propose that they help maintain the orientation of the cilia during beating, enhance their stiffness and improve their efficiency.  相似文献   

12.
The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha.  相似文献   

13.
The following presumptive sense receptors of adult Multicotyle purvisi from the intestine of freshwater turtles in Malaya are described by transmission electron microscopy: disc-like receptor with many electron-dense collars and modified ciliary rootlet forming a 'disc'; non-ciliate receptor with long rootlet; non-ciliate receptor with branching rootlet and dense mass of irregularly arranged microtubules; non-ciliate receptor with rootlet fanning out from basal body, cross-striated in its upper and with electron-dense structures in its lower part; uniciliate receptor with thick layer of cytoplasm around axoneme; receptor with short cilium, at base of deep invagination of tegument; receptor with short cilium terminating in an electron-dense apical cap; and uniciliate receptor with long cilium. In addition, there may be a small non-ciliate receptor with a long ciliary rootlet at the base of the thick dorsal tegument, and uniciliate receptors differing from the uniciliate receptor with long cilium in the number of electron-dense collars and the length of the cilium and ciliary rootlet. Implications of the findings for the phylogeny of the parasitic Platyhelminthes and for evolutionary trends within that group arc discussed. The considerable degree of divergence of receptor types between the species of one family is attributed to the archaic nature of the group.  相似文献   

14.
Serial ultrathin sections were used to study the formation of the primary cilium and the centriolar apparatus, basal body, and centriole in the neuroepithelial primordial cell of the embryonic nervous system in the mouse. At the end of mitosis, the centrioles seem to migrate toward the ventricular process of the neuroepithelial cell, near the ventricular surface. One of these centrioles, the nearest to the ventricular surface, begins to mature to form a basal body, since its tip is capped by a vesicle probably originating in the cytoplasm. This vesicle fuses with the plasmalemma and the cilium growth by the centrifugal extension of the 9 sets of microtubule doublets. These 9 sets invade the thick base of the cilium which is initially capped by a ball-shaped tip with the appearance of a mushroom cilium. The secondary extension of 7, then 5, and finally 2 sets of microtubule doublets contribute to form the tip of the mature cilium, which is associated with a mature centriolar apparatus formed by a basal body and a centriole. Centriologenesis occurs before mitosis and is concomitant with the progressive resorption of the cilium. The daughter centriole, or procentriole, begins to take form near the tips of fibrils that extend perpendicularly and at a short distance from the wall of the parent centriole. Osmiophilic material accumulates around these fibrils, and gives rise to the microtubules of the mature daughter centriole. These centrioles formed by a centriolar process are further engaged in mitosis, after the total resorption of the cilium. This pattern of development suggests that in the primordial cells of the embryonic nervous system, centriologenesis and ciliogenesis are 2 independent phenomena.  相似文献   

15.
In a correlated thin sectioning and freeze-fracturing study, we have examined species belonging to the orders of the ascidian class: Stolidobranchiata (Botryllus schlosseri, Botrylloides leachi, Molgula socialis, Styela plicata), Phlebobranchiata (Ascidiella aspersa, Phallusia ingeria, Ciona intestinalis) and Aplousobranchiata (Clavelina lepadiformis). Though the branchial basket varies in the complexity and filtration efficiency in the three orders, the ciliated epithelia aroand the stigmata contain a common pattern of organization; seven rows of flattened cells, each bearing a single row of long cilia flanked by a single row of microvilli. All the species examined possess ciliary specializations represented by: (a) bridges connecting doublets number 5 and 6 as well as 9.1 and 2; (b) dense material lying between the above mentioned axonemal doublets (5-6 and 1-2) and the ciliary membrane, sometimes in the shape of longitudinal strands or often as lines of dots; (c) a fuzzy coat protruding from the ciliary membrane, consisting of tufts or scattered filaments; (d) intramembrane particles (IMPs) associated with the P-face of the membrane, often arranged in clusters and orderly alignments related to the anderlying axonemal doublets; these IMPs decorate the opposite sides of each cilium facing the adjacent cilia forming the ciliary rows of adjacent cells and are absent on the lateral sides. The stigmatal cilia propel water through the stigmata and their effective strokes follow a line at right angles to the row of cilia in each cell. The usual direction of the effective stroke is toward doublets 5-6. It is possible, therefore, to refer to structure in relation to the ciliary beat cycle. The importance of these specializations is unknown, but the structures appear to vary in the different species. A correlation between the richness of the specializations and the complexity of the branchial basket was not evidenced. It was suggested that the ciliary specializations relate to the peculiar organization of the stigmatal margin and that all are involved in the regulation of the ciliary activity.  相似文献   

16.
Two structures on the distal ends of Chlamydomonas flagellar microtubules are described. One of these, the central microbutule cap, attaches the distal ends of the central pair microtubules to the tip of the flagellar membrane. In addition, filaments, called distal filaments, are observed attached to the ends of the A-tubules of the outer doublet microtubules. Inasmuch as earlier studies suggested that flagellar elongation in vivo occurs principally by the distal addition of sublnits and because it has been shown that brain tubulin assembles in vitro primarily onto the distal ends of both central and outer doublet microtubules, the presence of the cap and distal filaments was quantitated during flagellar resorption and elongation. The results showed that the cap remains attached to the central microtubules throughout flagellar resorption and elongation. The cap was also found to block the in vitro assembly of neurotubules onto the distal ends of the central microtubules. Conversely, the distal filaments apparently do not block the assembly of neurotubules onto the ends of the outer doublets. During flagellar elongation, the distal ends of the outer doublets are often found to form sheets of protofilaments similar to those observed on the elongating ends of neurotubules being assembled in vitro. These results suggest that the outer doublet microtubules elongate by the distal addition of subunits, whereas the two central microtubules assemble by the addition of subunits to the proximal ends.  相似文献   

17.
D J Peteya 《Tissue & cell》1975,7(2):243-252
An ultrastructural study of the tentacles of Stomphia and of Ceriantheopsis has revealed that the so-called 'ciliary-cone sensory cell' consists of a cluster of five to seven apparent receptors rather than just one cell as reported previously. At the center of a cluster is a single cell, whose dendrite bears one cilium surrounded by about ten large stereocilia. Surrounding this cell are a number of peripheral cells whose dendrites bear large numbers of small stereocilia and, in Ceriantheopsis, one cilium. The sensory apparatuses of all cells in a cluster unite to form a single unit projecting above the tissue surface: the ciliary cone. Their possible physiological role is discussed in relation to new behavioural observations.  相似文献   

18.
Eukaryotic cilia are assembled via intraflagellar transport (IFT) in which large protein particles are motored along ciliary microtubules. The IFT particles are composed of at least 17 polypeptides that are thought to contain binding sites for various cargos that need to be transported from their site of synthesis in the cell body to the site of assembly in the cilium. We show here that the IFT20 subunit of the particle is localized to the Golgi complex in addition to the basal body and cilia where all previous IFT particle proteins had been found. In living cells, fluorescently tagged IFT20 is highly dynamic and moves between the Golgi complex and the cilium as well as along ciliary microtubules. Strong knock down of IFT20 in mammalian cells blocks ciliary assembly but does not affect Golgi structure. Moderate knockdown does not block cilia assembly but reduces the amount of polycystin-2 that is localized to the cilia. This work suggests that IFT20 functions in the delivery of ciliary membrane proteins from the Golgi complex to the cilium.  相似文献   

19.
Thin-section electron microscope analysis of rat and rabbit-cultured granulosa cells treated with concanavalin A (Con A) at 37 degrees C revealed coordinated changes in the cytoplasmic disposition of microfilaments, thick filaments, and microtubules during cap formation and internalization of lectin-receptor complexes. Con A-receptor clustering is accompanied by an accumulation of subplasmalemmal microfilaments which assemble into a loosely woven ring as patches of receptor move centrally on the cell surface. Periodic densities appear in the microfilament ring which becomes reduced in diameter as patches coalesce to form a single central cap. Microtubules and thick filaments emerge associated with the capped membrane. Capping is followed by endocytosis of the con A-receptor complexes. During this process, the microfilament ring is displaced basally into the cytoplasm and endocytic vesicles are transported to the paranuclear Golgi complex along microtubules and thick filaments. Eventually, these vesicles aggregate near the cell center where they are embedded in a dense meshwork of thick filaments. Freeze-fracture analysis of Con A-capped granulosa cells revealed no alteration in the arrangement of peripheral intramembrane particles but large, smooth domains were conspicuous in the capped region of the plasma membrane. The data are discussed with reference to the participation of microtubules and microfilaments in the capping process.  相似文献   

20.
This study makes use of a procedure designed to illustrate, without serial section analysis, the three-dimensional changes in the ciliary axoneme produced by microtubule sliding, and to confirm essential features of the sliding microtubule hypothesis of ciliary movement. Cilia, isolated from Tetrahymena pyriformis by the dibucaine procedure, are attached to polylysine substratum, and treated with Triton X-100. Critical point drying maintains three-dimensional structure without embedding. The detergent removes the membrane and many axonemes unroll, always in an organized fashion so that doublets follow one another in sequence, according to the enantiomorphic form of the cilium. The central pair of microtubules fall to the side as a unit. The parallel doublet microtubules retain relative longitudinal positions in part by interdoublet or nexin links. Spoke organization and tip patterns are preserved in the opened axonemes. We generalize the work of Warner and Satir (Warner, F. D., and P. Satir, 1976. J. Cell Biol. 63:35-63) to show that spoke group arrangements are maintained for all doublets in straight regions, while systematic displacements occur in bent regions. The conclusion that local contraction of microtubles is absent in the axoneme is strengthened, and direct graphic demonstrations of sliding at the ciliary tip are shown. A morphogenetic numbering scheme is presented which results in a quantitative fit of the tip images to the images predicated by the equation for doublet sliding, and which makes possible new comparisons of structural parameters between axonemes and with cilia of other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号